


# Alakoko Loko I'a Conceptual Master Plan

Niumalu Ahupua'a, Puna District, Kaua'i



# Acknowledgments

---

---



## Mālama Hulē`ia Board and Staff

Sara Bowen, Executive Director  
Peleke Flores, Director of 'Āina & Community Engagement  
Jan TenBruggencate, Board of Directors President  
Sabra Kauka, Board of Directors Vice President  
LaVerne Bishop, Board of Directors Secretary  
Emory Griffin-Noyes, Board of Directors Treasurer  
Pelika Andrade, Board of Directors  
Mason Chock, Board of Directors  
Lee Evslin, Board of Directors  
Kilohana Haitsuka, Board of Directors  
Chris Kauwe, Board of Directors  
Ruby Pap, Board of Directors  
Allan Smith, Board of Directors  
Ka'iulani Carvalho, Staff  
Anne Sueko Coyle, Staff  
Punohu Kekauualua, Staff  
Jason Makaneole, Staff  
Kaniho Gimini, Staff

## Design and Planning Professionals

Meredith Speicher, National Park Service Rivers, Trails, and Conservation Assistance Program  
Zachary Babb, National Park Service Rivers, Trails, and Conservation Assistance Program  
Mélisa Babb, Alaska Chapter of the American Society of Landscape Architects  
Lizzy Dean, National Park Service Rivers, Trails, and Conservation Assistance Program  
Allyson Mathis, National Park Service Rivers, Trails, and Conservation Assistance Program  
Savannah Thomas, National Park Service Rivers, Trails, and Conservation Assistance Program  
Renée Eddy Harvey, National Park Service Rivers, Trails, and Conservation Assistance Program  
Ann Nyambega, University of Hawai'i, Master's Degree Candidate



Mālama Hulē'ia Board members (2025) at Alakoko Loko i'a. (L to R): Mason Chock, Emory Griffin-Noyes, Kilohana Haitsuka, Jan TenBruggencate, LaVerne Bishop, Ruby Pap, Chris Kauwe, Sabra Kauka, Lee Evslin, Pelika Andrade, Allan Smith.



Sara Bowen  
Executive Director  
(Left)

Peleke Flores  
Director of 'Āina & Community Engagement  
(Right)



The National Park Service – Rivers, Trails, and Conservation Assistance program (NPS-RTCA) supports locally-led conservation and outdoor recreation projects across the United States. NPS-RTCA assists communities and public land managers in developing or restoring parks, conservation areas, rivers, and wildlife habitats, as well as creating outdoor recreation opportunities and programs that engage future generations in the outdoors.

August 2025, Mālama Hulē'ia

# Mahalo

This conceptual master plan is a testament to the thousands of people who have shaped the work of Mālama Hulē'ia. The restoration of this special place is rooted in community and sustained by the generosity of kūpuna, educators, students, volunteers, families, organizations, and donors who have shared their time, knowledge, and resources.

Mālama Hulē'ia extends heartfelt mahalo to the many hands and hearts that have nurtured this work. While it is impossible to name every individual who has contributed, their presence lives on in the 'āina and in the spirit of this place.

*He iki unu paha, akā pa'a ka pōhaku nui 'a'ole ka'a.*

*Perhaps it is a small wedge stone that can stop the big stone from rolling.*



# Contents

---

---

|                                                                                |     |
|--------------------------------------------------------------------------------|-----|
| Acknowledgments .....                                                          | ii  |
| Mālama Hulēʻia Board and Staff .....                                           | ii  |
| Design and Planning Professionals .....                                        | ii  |
| Mahalo .....                                                                   | iv  |
| ʻŌlelo Hawaiʻi-English Glossary .....                                          | ix  |
| Abbreviations .....                                                            | xiv |
| Executive Summary .....                                                        | xv  |
| Chapter 1 Introduction .....                                                   |     |
| Purpose and Need .....                                                         | 1   |
| Alakoko Loko ʻa Description and Need .....                                     | 1   |
| Location .....                                                                 | 2   |
| Land Ownership and Stewardship .....                                           | 4   |
| Purpose and Vision .....                                                       | 7   |
| Endangered Hawaiian Waterbirds .....                                           | 7   |
| Planning Process .....                                                         | 9   |
| Chapter 2 History of Mālama Hulēʻia .....                                      | 11  |
| The Mālama Hulēʻia Approach .....                                              | 13  |
| History in the Making—Removing 26 Acres of Mangrove .....                      | 17  |
| Protecting and Monitoring Endangered, Threatened, and Native Species .....     | 23  |
| Chapter 3 History of Alakoko .....                                             | 25  |
| Looking Back as the Way Forward .....                                          | 25  |
| Alakoko Prior to Western Contact .....                                         | 26  |
| Western Contact’s Impact on Native Hawaiians and Traditional Agriculture ..... | 29  |
| Traditional Knowledge: Wetlands and Their Function .....                       | 31  |
| History of Alakoko Land Ownership .....                                        | 32  |
| Invasion of Red Mangrove .....                                                 | 33  |
| Alakoko Kuapā .....                                                            | 34  |
| Restoring Wetlands and Ahupuaʻa .....                                          | 35  |
| Chapter 4 Conceptual Restoration Plan .....                                    | 39  |
| Long-Term Commitment to Stewardship .....                                      | 40  |
| Principles and Values .....                                                    | 41  |
| Planning Process .....                                                         | 41  |

|                                                                                                             |     |
|-------------------------------------------------------------------------------------------------------------|-----|
| Conceptual Restoration Plan . . . . .                                                                       | 43  |
| Components of Alakoko Loko i'a . . . . .                                                                    | 43  |
| Restoration Goals and Objectives . . . . .                                                                  | 54  |
| Concept to Action—Summary of Planning, Progress, and Recommendations Moving Forward . . . . .               | 63  |
| Challenges and Opportunities with Hulē'ia NWR . . . . .                                                     | 68  |
| <br>Chapter 5 Climate Change Adaptation . . . . .                                                           | 75  |
| Introduction . . . . .                                                                                      | 75  |
| Existing Climate Indicators, Impacts, and Resilience Opportunities . . . . .                                | 76  |
| Strategies to Support and Sustain Ecosystem-based Adaptation to Deliver Broad Resilience Benefits . . . . . | 85  |
| <br>Chapter 6 Kuhikuhi Pu'uone (Architecture or Site Development) . . . . .                                 | 87  |
| Introduction . . . . .                                                                                      | 87  |
| Planning Process . . . . .                                                                                  | 88  |
| Existing Conditions . . . . .                                                                               | 89  |
| Development Considerations . . . . .                                                                        | 92  |
| Alakoko Kuhikuhi Pu'uone . . . . .                                                                          | 98  |
| Siting of Components Relative to Conservation District . . . . .                                            | 106 |
| Siting of Components Relative to Sea-level Rise Constraint District . . . . .                               | 106 |
| Phasing . . . . .                                                                                           | 106 |
| <br>Bibliography and References Cited . . . . .                                                             | 111 |
| Appendix 1 The Name of Alakoko Loko I'a . . . . .                                                           | 115 |
| Reference Cited . . . . .                                                                                   | 116 |
| Appendix 2 National Coastal Wetland Conservation Grant Ranking Criteria . . . . .                           | 117 |
| Reference Cited . . . . .                                                                                   | 117 |
| Appendix 3 Mo'olelo O Ka Laāhui Kaānaka I Kapa'ia Menehune, O Kaua'i . . . . .                              | 137 |
| References Cited . . . . .                                                                                  | 142 |
| Appendix 4 The Heart of Restoration: Cultivating Community Stewards for a Resilient Ecosystem . . . . .     | 143 |
| Endangered Waterbirds and Migratory Birds . . . . .                                                         | 144 |
| Aquatic Species . . . . .                                                                                   | 150 |
| Water Quality and Quantity Monitoring . . . . .                                                             | 152 |
| Predator Control Program . . . . .                                                                          | 152 |
| Native Plant Restoration . . . . .                                                                          | 153 |

|                                                          |     |
|----------------------------------------------------------|-----|
| Kuapā Restoration.....                                   | 155 |
| References.....                                          | 156 |
| Appendix 5 Alakoko Loko i'a Timeline & History.....      | 157 |
| Appendix 6 At Loko Alakoko, What's Under the Wall? ..... | 161 |
| Sources.....                                             | 167 |



# ‘Ōlelo Hawai‘i-English Glossary

---

---

This ‘Ōlelo Hawai‘i-English glossary includes English translations of Hawaiian words used throughout the conceptual master plan. It is not intended to provide the entire range of meanings that some Hawaiian words have, but only the specific usage(s) of the terms in this context.

| ‘Ōlelo Hawai‘i | English                                                                      | Scientific Name                         |
|----------------|------------------------------------------------------------------------------|-----------------------------------------|
| ‘a‘ama         | a type of crab                                                               | <i>Grapsus tenuicrustatus</i>           |
| ae‘o           | Hawaiian stilt                                                               | <i>Himantopus mexicanus knudseni</i>    |
| āholehole      | Hawaiian flagtail                                                            |                                         |
| ahu            | altar or shrine                                                              |                                         |
| ‘ahu‘awa       | sedge, a flood-tolerant sedge that can be used for erosion control           | <i>Cyperus javanicus</i>                |
| ahupua‘a       | land division, a traditional watershed-based land division                   |                                         |
| ‘āina          | that which feeds, land                                                       |                                         |
| ‘āina momona   | fertile land, rich and fertile land, or fat or fertile land that which feeds |                                         |
| ‘āina kumu wai | watershed                                                                    |                                         |
| ‘akē‘akē       | band-rumped storm-petrel                                                     | <i>Oceanodroma castro</i>               |
| ‘aki‘aki       | a native grass, also known as mānienie                                       | <i>Sporobolus virginicus</i>            |
| akua           | god, goddess, spirit, ghost, devil, image, idol, corpse; supernatural, godly |                                         |
| akule          | big-eyed scad or mackerel                                                    | <i>Trachurops crumenophthalmus</i>      |
| ‘ākulikuli     | a very low plant that provides ground cover                                  | <i>Sesuvium portulacastrum</i>          |
| ‘alae ke‘oke‘o | Hawaiian coot                                                                | <i>Fulica alai</i>                      |
| ‘alae ‘ula     | Hawaiian moorhen (gallinule)                                                 | <i>Gallinula chloropus sandvicensis</i> |
| ‘alamahi       | a type of native crab                                                        |                                         |
| alawai         | the main drainage ditch or irrigation channel                                |                                         |
| ali‘i          | chief or chiefess                                                            |                                         |
| aloha          | respect                                                                      |                                         |
| ‘ama‘ama       | striped mullet                                                               | <i>Mugil cephalus</i>                   |
| ‘a‘o           | Newell’s shearwater                                                          | <i>Puffinus auricularis newelli</i>     |
| ‘auku‘u        | black-crowned night heron                                                    | <i>Nycticorax nycticorax hoactli</i>    |
| ‘auwai         | irrigation channel or ditch                                                  |                                         |

| ‘Ōlelo Hawai‘i   | English                                                            | Scientific Name                    |
|------------------|--------------------------------------------------------------------|------------------------------------|
| ‘awa             | beverage made from the root of the kava plant                      |                                    |
| i‘a              | fish or marine animal                                              |                                    |
| ‘ike kūpuna      | ancestral knowledge                                                |                                    |
| ili              | a small division of land                                           |                                    |
| ‘ilahi           | Hawaiian sandalwood                                                |                                    |
| ‘ilima           | yellow mallow, a herbaceous flowering plant in the Hibiscus family | <i>Sida fallax</i>                 |
| imu              | underground oven                                                   |                                    |
| ‘ohana           | family                                                             |                                    |
| ‘ōiwi            | Hawaiian ancestry                                                  |                                    |
| oli              | chants                                                             |                                    |
| ‘o‘opu           | freshwater goby (a bony fish)                                      | <i>Lentipes concolor</i>           |
| ‘ōpae            | shrimp                                                             |                                    |
| ‘ope‘ape‘a       | Hawaiian hoary bat                                                 | <i>Lasiusurus cinereus semotus</i> |
| ‘uala            | sweet potato                                                       | <i>Ipomoea batatas</i>             |
| ‘ua‘u            | Hawaiian petrel                                                    | <i>Pterodroma sandwichensis</i>    |
| ‘uhaloa          | mallow, small medicinal shrub                                      | <i>Waltheria indica</i>            |
| uhau humu pōhaku | Indigenous drystack masonry                                        |                                    |
| ‘ulu             | breadfruit                                                         | <i>Artocarpus altilis</i>          |
| halā             | screwpine tree                                                     | <i>Pandanus tectorius</i>          |
| hale             | traditional Hawaiian house or building                             |                                    |
| hale hālāwai     | meeting house                                                      |                                    |
| hale imu         | cook house                                                         |                                    |
| hale kia‘i       | caretaker house                                                    |                                    |
| hale kuahui      | maintenance facility                                               |                                    |
| hale kuke        | kitchen house                                                      |                                    |
| hale noho        | dormitory                                                          |                                    |
| hale wa‘a        | canoe house                                                        |                                    |
| hīhīwai          | a freshwater snail                                                 | <i>Neritina granosa</i>            |
| hinana           | young ‘o‘opu (freshwater goby)                                     | <i>Lentipes concolor</i>           |
| hua              | eggs                                                               |                                    |
| huaka‘i          | field trip                                                         |                                    |

| ‘Ōlelo Hawai‘i | English                                                                           | Scientific Name               |
|----------------|-----------------------------------------------------------------------------------|-------------------------------|
| hui            | club, association, team                                                           |                               |
| hula           | Hawaiian dance form                                                               |                               |
| kahakai        | coastal zone                                                                      |                               |
| kahawai        | freshwater stream or river                                                        |                               |
| kai            | sea or ocean                                                                      |                               |
| kākū           | barracuda                                                                         | <i>Sphyraena barracuda</i>    |
| kalo           | taro                                                                              | <i>Colocasia esculenta</i>    |
| kānāwai        | law or the equal sharing of water                                                 |                               |
| kapu           | taboo, forbidden                                                                  |                               |
| ke‘ena         | headquarters, office                                                              |                               |
| kīhāpai        | a small garden                                                                    |                               |
| ki‘o pua       | a type of pond for raising juvenile fish (fry)                                    |                               |
| kilo           | observation                                                                       |                               |
| kinolau        | ceremonial use                                                                    |                               |
| kīpuka         | native habitat refuges or floating islands                                        |                               |
| kō‘ele         | A small pond, reserved for a chief, where fish could be kept alive until required |                               |
| koloa maoli    | Hawaiian duck                                                                     | <i>Anas wyvilliana</i>        |
| konohiki       | overseer of chief’s estate                                                        |                               |
| kuāna          | earthen material                                                                  |                               |
| kuāuna         | earthen bank or border to a water system (taro patch, pond, stream, or ditch)     |                               |
| kuapā          | wall, fishpond wall                                                               |                               |
| kūhonu         | a type of crab                                                                    |                               |
| kukui          | candlenut                                                                         | <i>Aleurites moluccana</i>    |
| kuleana        | privilege and/or responsibility                                                   |                               |
| kupa           | resident, native, citizen                                                         |                               |
| kupuna         | elder                                                                             |                               |
| lauhala        | Pandanus leaves                                                                   |                               |
| laulima        | many hands, cooperation                                                           |                               |
| lawai‘a        | traditional fisherman                                                             |                               |
| limu           | aquatic vegetation including seaweed                                              |                               |
| limu kala wai* | a type of seaweed                                                                 | <i>Sargassum echinocarpum</i> |

| ‘Ōlelo Hawai‘i | English                                                                    | Scientific Name              |
|----------------|----------------------------------------------------------------------------|------------------------------|
| limu lū‘au*    | red seaweed                                                                |                              |
| lo‘i           | Hawaiian taro patch/garden; a patch of water used to grow food             |                              |
| lo‘i i‘a kalo  | a taro patch that supports freshwater aquaculture                          |                              |
| lo‘i kalo      | a taro patch                                                               |                              |
| loko           | pond                                                                       |                              |
| loko i‘a       | traditional Hawaiian fishpond                                              |                              |
| loko i‘a kuapā | walled fishpond                                                            |                              |
| loko kuapā     | walled fishpond                                                            |                              |
| loko wai       | freshwater fishpond                                                        |                              |
| lumi ke‘ena    | office building, administration                                            |                              |
| māhele         | land redistribution                                                        |                              |
| mai‘a          | banana                                                                     |                              |
| maka‘āinana    | common people                                                              |                              |
| mākāhā         | saltwater inlet/outlet, or control gate                                    |                              |
| makai          | towards the ocean                                                          |                              |
| makaloa        | a small rounded sedge                                                      | <i>Cyperus laevigatus</i>    |
| makawai        | freshwater inlet or outlet                                                 |                              |
| māla           | garden                                                                     |                              |
| māla ‘ai       | cultivated food garden                                                     |                              |
| māla lā‘au     | medicine garden                                                            |                              |
| mālama         | to care for, stewardship                                                   |                              |
| mālama ‘āina   | care for the land                                                          |                              |
| mālama kai     | care for the sea                                                           |                              |
| mana‘o         | thought, belief, intention, concept                                        |                              |
| mānienie       | a native grass, also known as ‘aki‘aki                                     | <i>Sporobolus virginicus</i> |
| manini         | convict tang                                                               |                              |
| mau‘u ‘aki‘aki | a native sedge                                                             | <i>Fimbristylis cymosa</i>   |
| mauka          | towards the mountain                                                       |                              |
| mele           | song, poetry used as recordings of the past                                |                              |
| Menehune       | in some legends, a race of people who first inhabited the Hawaiian Islands |                              |

| ‘Ōlelo Hawai‘i | English                                                     | Scientific Name                |
|----------------|-------------------------------------------------------------|--------------------------------|
| mo‘ala         | a type of crab                                              |                                |
| moi            | Pacific threadfin                                           | <i>Polydactylus sexfilis</i>   |
| moku           | district                                                    |                                |
| mo‘o           | lizard, water spirit                                        |                                |
| mo‘olelo       | ancestral knowledge or traditional or past Hawaiian stories |                                |
| muliwai        | estuaries, mouths of rivers, wetlands                       |                                |
| nahele         | forest or tree grove                                        |                                |
| neke           | a native fern                                               | <i>Cyclosorus interruptus</i>  |
| nēnē           | Hawaiian goose                                              | <i>Branta sandvicensis</i>     |
| pāpio          | juvenile in the trevally or jack family                     |                                |
| pi ko          | navel, or where life begins                                 |                                |
| pilina         | connection, relationships                                   |                                |
| pōhaku         | stone                                                       |                                |
| pono           | moral, ethical, proper                                      |                                |
| po‘owai        | main water inlet                                            |                                |
| pōpolo         | glossy nightshade                                           | <i>Solanum americanum</i>      |
| pualu          | yellow-fin surgeonfish                                      |                                |
| pulehu         | to cook on coals                                            |                                |
| punawai        | freshwater spring                                           |                                |
| pu‘u kāhea     | calling hill                                                |                                |
| wahi pana      | storied places                                              |                                |
| wai            | fresh water                                                 |                                |
| waihona        | archive                                                     |                                |
| waiwai         | wealth                                                      |                                |
| wao akua       | mountain top and sky                                        |                                |
| wao kanaka     | agriculture zone                                            |                                |
| wao nahele     | inland forest zone                                          |                                |
| wauke          | paper mulberry                                              | <i>Broussonetia papyrifera</i> |

# Abbreviations

---

---

|       |                                                 |
|-------|-------------------------------------------------|
| ACOE  | Army Corps of Engineers                         |
| ADA   | Americans with Disabilities Act                 |
| ARC   | Archipelago Research and Conservation           |
| BMPs  | best management practices                       |
| CCP   | Comprehensive Conservation Plan                 |
| DAR   | State Division of Aquatic Resources             |
| EbA   | Ecosystem-based adaptation                      |
| EPA   | U.S. Environmental Protection Agency            |
| ESA   | Endangered Species Act                          |
| HWJV  | Hawai‘i Wetland Joint Venture                   |
| IRM   | Indigenous Resource Management                  |
| KIUC  | Kaua‘i Island Utility Cooperative               |
| MOU   | Memorandum of Understanding                     |
| NbS   | nature-based solutions                          |
| NBWC  | Nāwiliwili Bay Watershed Council                |
| NCWCG | National Coastal Wetland Conservation Grants    |
| NHO   | Native Hawaiian Organization                    |
| NOAA  | National Oceanic and Atmospheric Administration |
| NWR   | National Wildlife Refuge                        |
| ONHR  | Office of Native Hawaiian Relations             |
| SLR   | sea level rise                                  |
| SUP   | Special Use Permits                             |
| TPL   | Trust for Public Land Hawai‘i                   |
| USFWS | U.S. Fish and Wildlife Service                  |



# Executive Summary

This conceptual master plan outlines Mālama Hulē'ia's long-term vision, priorities, and path forward for the restoration and stewardship of Alakoko loko i'a, a more than 600-year-old loko i'a kuapā (walled fishpond) located along the Hulē'ia River in the ahupua'a (traditional watershed-based land division) of Niumalu, Kaua'i. Now under the care of Mālama Hulē'ia, the 102-acre property, including the 40-acre loko i'a, serves as both a living classroom and a cultural treasure with deep ecological, historical, and spiritual significance.

The plan reflects nearly a decade of community-based restoration, technical study, cultural research, and collaborative planning. It is both a guiding document and a call to action for the next generation of stewardship, grounded in Hawaiian values and ecological resilience.

The first three chapters provide the foundation for this plan, introducing the purpose and need for restoration, tracing the history and evolution of Mālama Hulē'ia, and recounting the cultural and ecological story of Alakoko. Together, these chapters, supported by further information in the appendices, establish the context of place, community, and history that grounds the restoration vision.

## Purpose and Vision

The primary purpose of this plan is to:

- ▶ Guide restoration of the loko i'a and surrounding ecosystem.
- ▶ Ensure compliance with regulatory and grant responsibilities.
- ▶ Align site development, cultural practice, and education programming.
- ▶ Strengthen partnerships with adjacent landowners and agencies (e.g., U.S. Fish and Wildlife Service [USFWS]).
- ▶ Serve as a framework for community, cultural, and ecological resilience.

Mālama Hulē'ia's vision is a "free-flowing, healthy and productive Hulē'ia ecosystem sustaining our community culturally, physically, and spiritually, perpetuating community pride."

## Key Components of the Plan

### 1. Conceptual Restoration Plan (Chapter 4)

- ▶ Removal of 26 acres of invasive red mangrove (completed 2018–2021), reopening hydrological flows and revealing the historic kuapā (wall).
- ▶ Restoration of native wetland, coastal, and forest plant species.
- ▶ Rebuilding the kuapā through traditional uhau humu pōhaku (Indigenous drystack masonry) practices.
- ▶ Support for threatened and endangered species including ae'o (Hawaiian stilt), koloa maoli (Hawaiian duck), 'alae 'ula (Hawaiian moorhen [gallinule]), 'alae ke'oke'o (Hawaiian coot), and 'ōpe'ape'a (Hawaiian hoary bat).

### 2. Climate Change Adaptation (Chapter 5)

- ▶ Identification of sea level rise vulnerabilities.
- ▶ Use of ecosystem-based adaptation strategies to enhance resilience.
- ▶ Integration of 'ike kūpuna (ancestral knowledge) with contemporary climate science.

### 3. Kuhikuhi Pu'uone (Architecture or Site Development) (Chapter 6)

- ▶ Development of the infrastructure necessary to fulfill Mālama Hulē'ia's mission of restoration, stewardship, cultural practice, and educational and cultural programming. The hale hālāwai (meeting house) and hale wa'a (canoe house) will be constructed with traditional methods and materials.
- ▶ Phased construction in alignment with conservation district permitting and cultural priorities.

### 4. Cultural Foundations

- ▶ Emphasis on mo'olelo (Hawaiian stories), 'ike kūpuna, and mālama 'āina (care for the land).
- ▶ Integration of education programming, including virtual huaka'i (field trip) and K-12 partnerships.
- ▶ Engagement with Hui Mālama Loko I'a and other statewide cultural practitioners.

## Land Ownership and Legal Commitments

In 2021, Mālama Hulē’ia acquired ownership of the property with support from the Trust for Public Land. The deed ensures that the land will be protected in perpetuity for:

- ▶ Native Hawaiian ‘āina-based education and stewardship.
- ▶ Restoration of ecosystems and aquaculture.
- ▶ Cultural perpetuation and pono (moral, ethical, proper) public access.

Grant agreements (e.g., National Coastal Wetland Conservation Grants [NCWCG]) require at least 20 years of active stewardship and monitoring of restoration outcomes, reinforcing long-term accountability.

## Collaboration with Hulē’ia National Wildlife Refuge

Parts of Alakoko loko i‘a ecosystem fall within the Hulē’ia National Wildlife Refuge boundary. This plan assumes collaborative management with the USFWS to meet shared goals for habitat protection, endangered species recovery, and access agreements. This relationship is a vital piece of Mālama Hulē’ia’s stewardship strategy and ongoing federal partnership efforts.

## Looking Ahead

This plan is both a declaration of kuleana (privilege/responsibility) and a strategic roadmap. Its success will require continued:


- ▶ Ongoing investment in capacity, infrastructure, and restoration efforts.
- ▶ Strong coordination across community, agencies, and partnerships.
- ▶ Expanding and deepening of ‘āina-based education and cultural learning opportunities.
- ▶ Sustained advocacy for policy support and climate resilience funding.

Over the next 10–20 years, Mālama Hulē’ia’s focus will be on building the foundation for long-term sustainability, including:

- ▶ Stabilization of the full 2,700-foot kuapā through uhau humu pōhaku.
- ▶ Restoration of hydrological flows, with functioning punawai (freshwater springs) and ‘auwai (irrigation channels or ditches).
- ▶ Creation of thriving habitat for endangered waterbirds and other native species.
- ▶ Expansion of ‘āina-based education programs reaching thousands of learners annually.

While these are the immediate milestones, the overarching vision extends across generations. Alakoko is not just a site—it is a living, breathing wahi pana (storied place), calling Native Hawaiians and community members to act with integrity, humility, and vision so that future generations may inherit abundance and resilience.





# Chapter 1 Introduction

## Purpose and Need

In 2021, Mālama Hulē'ia became the landowner of Alakoko loko i'a (Hawaiian fishpond) and surrounding property. The 40-acre (16.2-hectare) fishpond is located on two parcels totaling 102 acres (41.2-hectare). Alakoko loko i'a is on the Hulē'ia River in Kaua'i, approximately 0.6 mile (1 km) upstream from Nāwiliwili Small Boat Harbor in Līhu'e. This document was created by Mālama Hulē'ia to guide the organization in the restoration, stewardship, site planning, uses, programming, and overall approach to care for land and water in a way that restores the functions of a Hawaiian loko i'a.

### Alakoko Loko I'a Description and Need

Mālama Hulē'ia prefers the name "Alakoko loko i'a." Alakoko is the spelling used in historical references from the 1800s, versus the later spelling of Alekoko. The pond is known by several other names, including most notably "Menehune Fishpond." The naming of places is reflective of the mo'olelo (story), the 'oli (chants), and mele (songs) that entwine and perpetuate people and place. See Appendix 1 for more details.

Alakoko loko i'a sits in a geomorphic bend in the Hulē'ia River. An ancient Hawaiian stone-faced dirt wall with a length of more than 2,700 feet (820 m) long separates the loko i'a from the Hulē'ia River. Alakoko is considered a loko i'a kuapā (walled fishpond), one of the six general types of loko i'a. Alakoko is tidally influenced and has brackish water due to its proximity to freshwater springs and Nāwiliwili Harbor. A full history is found in Chapter 3.

Alakoko loko i'a was listed on the National Register of Historic Places in 1973, and is on the Hawai'i Register of Historic Places. It is considered to be the most significant loko i'a on Kaua'i and is estimated to be 600 years old. A loko i'a is an important component of an ahupua'a (traditional watershed-based land division) that contributes to a healthy and robust food system. They are unique aquaculture

systems that exist throughout Hawai'i, and were developed to optimize natural patterns of watersheds, nutrient cycles, and fish biology.

However, during the 20th century, Alakoko loko i'a became overrun by invasive red mangrove (*Rhizophora mangle*). This led to significant damage to the kuapā (wall), fundamental changes in the pond's size, hydrology and ecology. The dense mangrove overgrowth also made the loko i'a itself virtually inaccessible to people. Removing the mangrove was needed to save Alakoko loko i'a from destruction. Mangrove removal was only the first step in restoring Alakoko as a functioning loko i'a. The restoration of native and traditional plants and water flow will allow it to once again be an integral part of the ahupua'a and regional ecosystem, reflecting Hawaiian ingenuity.

## Location

Located just south of Līhu'e on the Hulē'ia River, Alakoko loko i'a is in the ahupua'a of Niumalu within the moku (district) of Puna (Figure 1-1). The Hulē'ia River flows through several ahupua'a, including Ha'ikū, Kīpū, Niumalu, Nāwiliwili, and Kalapakī. The area has long been a center of human activity on Kaua'i. This 'āina momona (fertile land) is a region known for its abundance (Fechner et al. 2022). At one time, there were lo'i kalo (taro patches) and other food crops that flourished along the many streams and valleys of Hā'upu, a nearby mountain summit. With such abundance, the ahupua'a was likely as noted 19th-century Hawaiian historian Samuel Mānaiakalani Kamakau described (Mackenzie et al. 2015 and Smith et al. 1972):





Figure 1-1. Location map.

*"places that had taro patches and... fishponds loved the lands where they dwelt... [food was] laid in a food bowl and one ate until he was full."*

*"The lands where the freshwater ponds, loko wai, were, for they furnished them with fresh 'ōpae [shrimp], crisp limu kala wai [seaweed], reddish 'o'opu [freshwater goby] roe, and limu lū'au [red seaweed]."*

The Hulē'ia River is the longest and largest of the many streams, including Pū'ali, Papalinaho, and Nāwiliwili that flow into Nāwiliwili Bay (Fechner et al. 2022). Hulē'ia serves as a vital freshwater artery in the southern portion of Puna. This waterway holds historical significance, being a crucial resource for traditional Hawaiian agriculture and aquaculture. The waiwai (wealth) derived from Hulē'ia was shared among several adjacent ahupua'a, illustrating its role in fostering interconnectedness and sustainability across mountain-to-sea land divisions.

## Land Ownership and Stewardship

In 2021, with an outpouring of community support and assistance from the Trust for Public Land (Hawai'i) (TPL), Mālama Hulē'ia purchased the property containing Alakoko loko i'a. Deed restrictions ensure the property will be used in perpetuity for Native Hawaiian 'āina-based stewardship (see sidebar next page). 'Āina-

based stewardship is the Hawaiian approach that involves the caring for and learning from the land, sea, and air, recognizing the interconnectedness and responsibility to address the needs of future generations. The property is within State Conservation District lands and a Special Management Area, requiring processes and restrictions to address conservation and access to coastal lands and public resources.

Alakoko loko i'a is adjacent to the Hulē'ia National Wildlife Refuge (NWR), managed by the U.S. Fish and Wildlife Service (USFWS). Other direct neighbors include single family homes, the Niumalu community, and Grove Farm, which leases agricultural lands (Figure 1-2).

The purpose of Hulē'ia NWR is to protect and assist in the recovery of threatened and endangered species, especially native waterbirds, other wildlife, and plants, under the Endangered Species Act of 1973 (16 U.S.C. § 1534). The Alakoko property also provides habitat for these vulnerable endangered and



Māla (garden) overlooking Alakoko loko i'a

## The Alakoko Loko i'a Property Deed Ensures that the Property Will Be Used in Perpetuity for:

- ▶ Native Hawaiian 'āina-based education, natural resource management, and stewardship;
- ▶ Perpetuation of traditional and customary Native Hawaiian cultural practices;
- ▶ Preservation and restoration of historic and culturally important land and sites;
- ▶ Preservation and restoration of significant native habitats or ecosystems;
- ▶ Preservation and restoration of land and water used for sustainable aquaculture and agriculture to increase local food self-sufficiency;
- ▶ Preservation and restoration of Niumalu watershed lands for water quality and quantity;
- ▶ Preservation and restoration of land to reduce erosion, floods, landslides and runoff;
- ▶ Pono (moral, ethical, proper), responsible, reciprocal, managed, safe, guided public access that ensures its cultural and natural resources are protected;
- ▶ Conservation of property for open space and scenic values.

The deed restriction also limits development on and subdivision of the property.

threatened species that are known to live in or pass through the area around the project site.

The restoration plan described in Chapter 4 includes efforts that are on Hulē'ia NWR lands as the refuge boundary overlaps with parts of the overall loko i'a system, including part of the pond itself. Grant requirements mandate that Mālama Hulē'ia be able to work on Hulē'ia NWR property in order to restore and maintain Alakoko loko i'a. In addition to the initial work Mālama Hulē'ia did to remove invasive plants and restore wetlands, they are required to maintain the restored areas for a minimum of 20 years (see Appendix 2). Mālama Hulē'ia will continue to restore native vegetation and traditional Hawaiian agricultural and medicinal plants, provide habitat for native species including threatened and endangered waterbirds, and ensure that there are on-going efforts to steward the lands. Therefore, this plan is built upon the premise that Mālama Hulē'ia and the Hulē'ia NWR managers will work collaboratively to manage the lands along the Alakoko-Hulē'ia NWR boundary, and will implement best management practices to ensure protections for threatened and endangered species and the restoration of the loko i'a. These species include:

### Waterbirds

- ▶ Ae'o, Hawaiian stilt (*Himantopus mexicanus knudseni*)
- ▶ 'Alae 'ula, Hawaiian moorhen (gallinule) (*Gallinula chloropus sandvicensis*)
- ▶ 'Alae ke'oke'o, Hawaiian coot (*Fulica alai*)
- ▶ Koloa maoli, Hawaiian duck (*Anas wyvilliana*)
- ▶ Nēnē, Hawaiian goose (*Branta sandvicensis*)

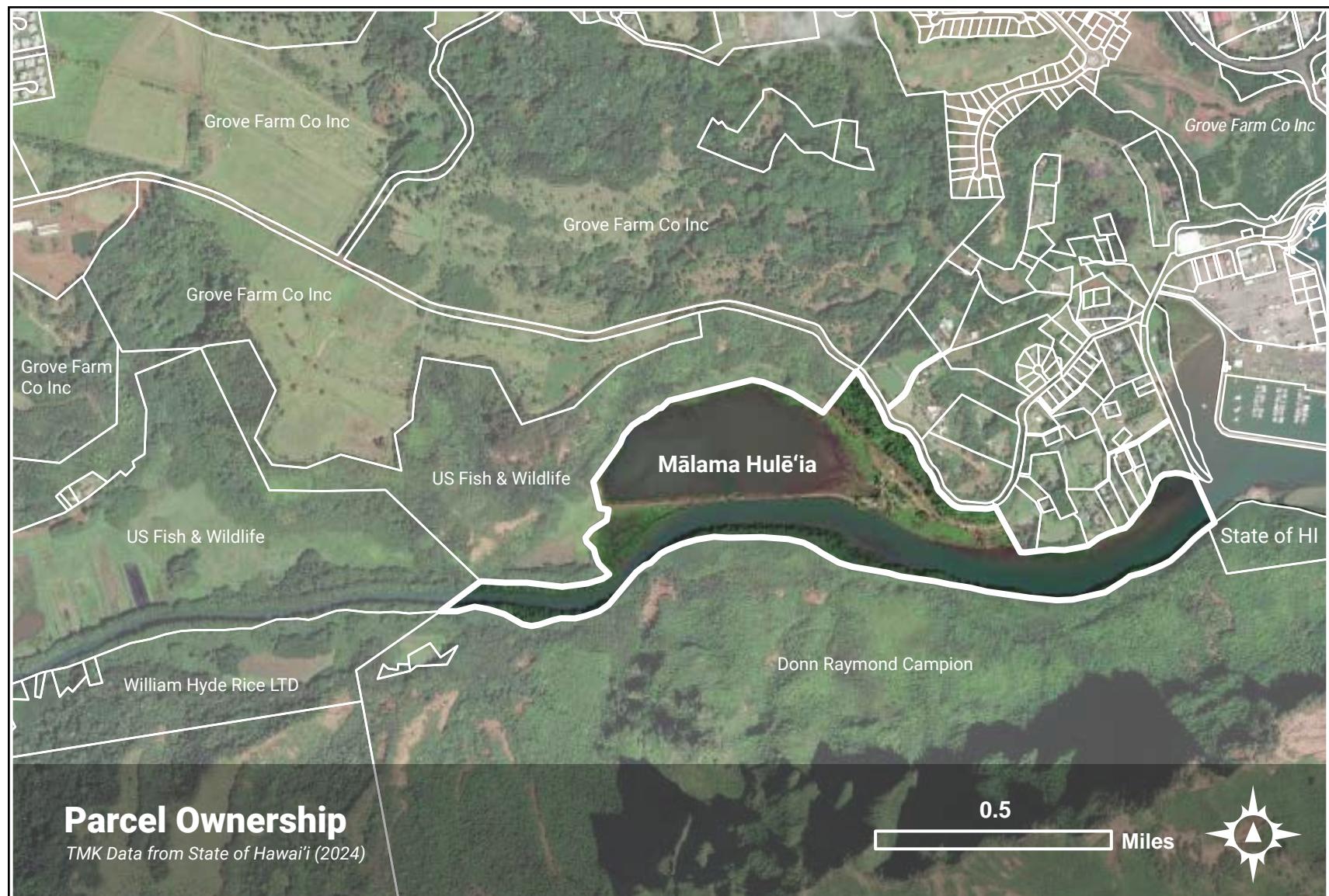



Figure 1-2. Map showing parcel ownership for Alakoko loko i'a and surrounding properties.

# Endangered Hawaiian Waterbirds

Five endangered species of endemic waterbirds are present in the area around Alakoko loko i'a, including in the neighboring Hulē'ia NWR, which was established to aid in their recovery.



**Koloa maoli**  
Hawaiian duck



**Ae'o**  
Hawaiian stilt



**Nēnē**  
Hawaiian goose



**'Alae 'ula**  
Hawaiian moorhen  
(gallinule)



**'Alae ke'oke'o**  
Hawaiian coot

All photos credited to USFWS: Laurel Smith (koloa maoli, nēnē, 'alae ke'oke'o), Gary Kramer (ae'o, 'alae 'ula)

## Seabirds

- 'Ua'u, Hawaiian petrel (*Pterodroma sandwichensis*)
- 'A'o, Newell's shearwater (*Puffinus auricularis newelli*)
- 'Akē'akē, band-rumped storm petrel (*Oceanodroma castro*)

## Mammal

- 'Ope'ape'a, Hawaiian hoary bat (*Lasiurus cinereus semotus*)

This plan includes goals and objectives to support these species as well as migratory species (see Chapter 4). For Native Hawaiians, the waterbirds are indications of a healthy ecosystem. While the federal and state laws define the purpose of the refuge to be for these endangered species, Mālama Hulē'ia also sees them as indicators of success. The restoration addresses the need for habitat that supports the life cycles of these endangered species.

## Purpose and Vision

Mālama Hulē'ia is a community-based mālama 'āina (care for the land) nonprofit organization leading the restoration of Alakoko loko i'a. Mālama Hulē'ia's

Community outreach and educational programming give Mālama Hulē'ia the opportunity to share the rich mo'olelo of Alakoko loko i'a. As mo'olelo provides lessons, history, and context of place, Mālama Hulē'ia former staff member Tiele-Lauren Doudt developed a new translation of "Mo'olelo O Ka Laāhui Kaānaka I Kapa'ia Menehune, O Kaua'i." This story for Alakoko loko i'a describes the role of Menehune (a race of people who first inhabited the Hawaiian islands) in the creation of Alakoko loko i'a. See Appendix 3.

strategic plan identifies their vision as: "A free-flowing, healthy and productive Hulē'ia ecosystem sustaining our community culturally, physically, and spiritually, perpetuating community pride." To achieve this vision, Mālama Hulē'ia actively advocates, educates, and leads efforts to remove invasive red mangrove along the Hulē'ia River, restore native wetland ecosystems, manage the Alakoko loko i'a, and develop environmental stewardship programs that honor Hawaiian values.

The purpose of restoring Alakoko loko i'a is to bring abundance back to the 'āina through the rehabilitation of a productive loko i'a with functioning punawai (freshwater spring) and attached ecological systems. Repairing the function of the loko i'a addresses the needs of native plants and animals, while perpetuating Hawaiian ecological knowledge through practice, kilo (observation), research, and teaching the next generation of practitioners.

The conceptual master plan outlines a vision for the Alakoko loko i'a over the next 600–800 years, aiming for an abundant and healthy ecosystem while addressing restoration work in the



upcoming 10–20 years. Guided by Hawaiian practitioners, scientists, and subject matter experts, the plan incorporates Hawaiian ecological knowledge, traditional cultural practices, community, student/academic involvement, and Western scientific methods. It focuses on enhancing native biodiversity and ecosystem functions at Alakoko loko i'a while coordinating with neighboring landowners to eradicate red mangrove and other invasive species throughout the Hulē'ia River watershed. It also serves to bring back aquacultural and agricultural systems that address community needs.

Since 2015, Mālama Hulē'ia has engaged in removing red mangrove within the surrounding Hulē'ia River watershed, including at Alakoko loko i'a. By 2021, Mālama Hulē'ia had removed 26 acres (10.5-hectare) of mangroves on the Alakoko loko i'a property (Appendix 3) and has been restoring the area.

In 2021, Mālama Hulē'ia was able to purchase the property that contained most of Alakoko loko i'a. This provided the nonprofit the opportunity to undertake a comprehensive restoration project and planning process to restore the functionality of Alakoko loko i'a. These efforts address the restoration of the loko i'a as well as the infrastructure needed to maintain the restored site, conduct education programming, and continue to work with the community to restore Hawaiian practices through 'āina-based restoration and stewardship.

Ownership of Alakoko property holds tremendous kuleana (privilege/responsibility). The restoration of Alakoko loko i'a will bring an important cultural resource back into functionality. Native Hawaiians view this as an opportunity to connect to ancestors, to learn from the land and water, and establish the practices that were an integral part of the cultural and spiritual connections between people and place. Part of Mālama Hulē'ia's stewardship of Alakoko loko i'a involves researching Hawaiian resources such as 'ike kūpuna (ancestral knowledge), mo'olelo (Hawaiian stories), mele (songs), and oli (chants), Hawaiian language newspapers and accounts, insights from cultural practitioners and subject matter experts, and knowledge from lineal descendants from the ahupua'a. This knowledge will serve as a waihona (archive) allowing Mālama Hulē'ia to build a library to share traditional Hawaiian knowledge with the community.

## Planning Process

The plan aims to guide ongoing restoration, stewardship, infrastructure development, and programming for the site. It includes comprehensive evaluations of restoration approaches, recommendations for infrastructure to support Mālama Hulē'ia operations, and long-term management of the property.

The plan incorporates required measures that adhere to regulations, such as the National Environmental Policy Act, National Historic Preservation Act, and the Endangered Species Act, as well as requirements of grants that have helped fund Mālama Hulē'ia's work at the site.

In 2022, Mālama Hulē'ia applied to the National Park Service Rivers, Trails, and


Conservation Assistance (NPS-RTCA) Program for technical planning assistance for a conceptual master plan for Alakoko. Mālama Hulē'ia staff and board, along with input from the community, has used this planning process and the technical assistance from NPS-RTCA, to chart a path forward to honor and steward this place for generations to come. This process included developing a purpose statement, vision, and best practices to guide this plan and future work at Alakoko loko i'a:

The conceptual master plan for Alakoko loko i'a includes two major components:

- ▶ A conceptual restoration plan (Chapter 4)
- ▶ Kuhikuhi Pu'uone (Architecture or Site Development Plan) (Chapter 6)

Consideration of the potential impacts of climate change on Alakoko loko i'a was an important part of these planning efforts. Alakoko may experience chronic flooding due to sea level rise (Chapter 5). But restoration of the site should improve its resilience to the impacts of climate change.

This conceptual master plan also includes a history of Mālama Hulē'ia (Chapter 2) and of Alakoko (Chapter 3 and Appendix 5) as well as other supporting information.



## Chapter 2 History of Mālama Hulē'ia

Mālama Hulē'ia was formally established as a 501c(3) organization in 2015 and has been working within the Hulē'ia River and surrounding area to remove the 70 acres (28.3 hectares) of invasive red mangrove within the ahupua'a (traditional watershed-based land division) and restore native ecosystems throughout the watershed.



Sara Bowen has led Mālama Hulē'ia as Executive Director since its inception as an independent nonprofit in 2015. Sara is responsible for implementing the organization's strategic plan and its goals and objectives. She also secures the funding, permits, and permissions for Mālama Hulē'ia's restoration work at Alakoko loko i'a and throughout the Hulē'ia watershed.

Mālama Hulē'ia was spawned by two community organizations that worked in different ways with and on the water: Nāwiliwili Bay Watershed Council (NBWC) and Kaiola Canoe Club. NBWC provided the scientific analysis and recommendations for the watershed that helped Kaiola Canoe Club with the rationale and funding success for the pilot projects.

Mangrove removal began in 2013 and 2014 when Kaiola Canoe Club received two one-year grants from the National Oceanic and Atmospheric Administration (NOAA) and the Hawai'i Community Foundation for work at a 2.5-acre (1-hectare) demonstration site next to the Kaua'i County Niumalu Beach Park. An extension of the pilot project treated an additional 1.5 acres (0.6 hectares). These initial efforts also built community support and partnerships for long-term stewardship of the area. With this successful project, the Kaiola Canoe Club Mangrove Removal Steering Committee developed into Mālama Hulē'ia.

In 2015, Mālama Hulē'ia contracted the services of the University of Hawai'i Sea Grant College Program to formulate a strategy to remove red mangrove from the lower Hulē'ia watershed (University of Hawai'i Sea Grant College Program

---

## Nāwiliwili Bay Watershed Council

In 1999, a group of citizens united by a concern about the degradation of the watersheds feeding into the Nāwiliwili Bay (including the Hulē'ia River, and Pū'ali, Papalinahoa, and Nāwiliwili streams) formed the NBWC in 1999. Part of the stimulus for formation of this group was the Hawai'i Unified Watershed Assessment (State of Hawai'i Department of Health 1998), which classified the Nāwiliwili Bay Watershed as Category I - Watersheds in Need of Restoration. Category I watersheds do not currently meet, or face imminent threat of not meeting clean water and other resource goals (Furness et al. 2002). NBWC responded to this classification by assisting with grant-funded projects designed to raise public awareness about the problems of runoff in the watershed. One project resulted in the educational website 'Āina Kumuawai: Ahupua'a of Nāwiliwili Bay (Cockett 2001), which Mālama Hulē'ia uses as a source of historical information and photographs. Another important contribution by the NBWC was in cooperating with the three-phase Assessment and Protection Plan for the Nāwiliwili Watershed (Furness et al. 2002; El-Kadi et al. 2003; and El-Kadi et al. 2004), which formed the basis of the Nāwiliwili Watershed-Based Plan. This is the plan that enables use of the U.S. Environmental Protection Agency (EPA) Section 319 Nonpoint Source Pollution Program to clean up a watershed. The plan covered the nine elements required by the EPA for watershed-based plans that can utilize Section 319 funding.

## Kaiola Canoe Club

Kaiola Canoe Club was the mother organization of Mālama Hulē'ia as its formative years were as a project steering committee within the club. As active outrigger canoe paddlers, club members felt the urgency to do something about the red mangrove invasion of the Hulē'ia River and responded by forming Mālama Hulē'ia. The group began mangrove removal while still under the auspices of Kaiola Canoe Club.



---

2015). Development of this action plan included determination of the extent and locations of red mangrove infestation in the watershed, analysis of effectiveness and costs of various mangrove removal techniques, and facilitated action planning meetings with the Mālama Hulē'ia Board of Directors.

After the pilot project's success, plans were developed to address the remaining 66 acres (26.7 hectares) infested with red mangrove to restore the ecological function and productivity of the river and wetlands, improve water quality, and revive the culturally significant Alakoko loko i'a by removing 26 acres (10.5 hectares) of mangrove at Alakoko loko i'a.

In 2018, Mālama Hulē'ia developed a strategic plan and adopted its mission to advocate, educate, and lead community efforts to remove invasive red mangrove along the Hulē'ia River, reestablish native wetland ecosystems, and create an environmental stewardship program honoring Hawaiian values.

Since 2018, Mālama Hulē'ia has made significant progress in the removal of the invasive mangrove and the organization has grown significantly. They became the landowner of Alakoko loko i'a, and increased their knowledge, experience, and its ability to use biocultural restoration techniques. This prompted the organization to initiate an early update to the strategic plan (Mālama Hulē'ia 2021).

## The Mālama Hulē'ia Approach

The vision for Alakoko loko i'a is not just shaped by Mālama Hulē'ia's board and staff, technical experts, Hawaiian practitioners, conservation professionals, scientists, and educators; it is also deeply rooted in the contributions of community volunteers. These volunteers and the broader community are essential to Mālama Hulē'ia's achievements—in the past, present, and into the future. Their dedication underscores the significance of collective action, especially when guided by the wisdom of Hawaiian culture. This spirit of collaboration is reflected in the Mālama Hulē'ia approach, which is informed by diverse ways of learning, including the Hawaiian practices of mo'olelo and mele (songs), place names, Hawaiian language newspaper articles and documents, chants, and 'ike kūpuna (ancestral knowledge). This cultural lens considers the spiritual, physical, and environmental dimensions of place, guiding restoration with wisdom passed down through generations. Mālama Hulē'ia is guided by the principles of mālama 'āina (care for the land) and mālama kai (care for the sea).

Hawaiian scholars are documenting indigenous knowledge, creating a new generation of practitioners who integrate cultural practices and traditional knowledge with Western science and ecological understanding (Winter et al. 2021). Under the guidance of Hawaiian Cultural Practitioner Peleke Flores (Figure 2-1), Mālama Hulē'ia embraces a biocultural approach to restoration—one that

blends traditional knowledge with scientific methods. This approach acknowledges the interdependence of cultural and ecological systems and focuses on collaborative partnerships that build on past successes and address challenges (Gavin et al. 2015). This program is grounded in kilo, where community members and schools actively participate in monitoring and caring for the land. The community plays an integral role in all aspects of the restoration program from native-plant propagation to water-quality testing.

Loko i'a restoration statewide follows this biocultural model and is not done in isolation. Mālama Hulē'ia is a participating member of [Hui Mālama Loko i'a](#), a statewide group of practitioners who embrace this biocultural model and work across organizations, government agencies, and with Hawaiian cultural practitioners to share the lessons learned, assist one another, and further the understanding and restoration of loko i'a statewide. This has helped loko i'a restoration efforts across the islands, advancing



Figure 2-1. Peleke Flores, Mālama Hulē'ia's Director of 'Āina and Community Engagement, has led restoration and education at Alakoko since 2018. He previously spent ten years at He'eia Fishpond on O'ahu, building expertise in loko i'a restoration, invasive species removal, and community stewardship.

understanding and ways to sustainably restore and manage these resources. One of the major accomplishments of this group is the Ho'āla Loko i'a program, a streamlined permitting process for the restoration and maintenance of traditional Hawaiian fishpond systems (Office of Conservation and Coastal Lands 2025). This program has allowed for better understanding of loko i'a restoration for regulators and addresses county and state permitting on conservation district lands. Further work to address federal laws are still needed to address conflicts with some biocultural approaches and traditional Hawaiian restoration practices. Hui Mālama Loko i'a has advanced restoration by adapting lessons learned and sharing knowledge among practitioners (KUA 2025). Their gatherings and workshops foster collaboration, enhancing the restoration of wetlands and loko i'a to improve ecosystem services.

Through this process of observation, practice, and sharing, the Hawaiian loko i'a community continues to build resilience and deepen its stewardship of the land and waters. Mālama Hulē'ia collaborates across the state with Hawaiian



Volunteers planting native vegetation on the kuapā following mangrove removal.

---

---

*"The stewardship of Alakoko is sowing the seeds of kuleana in the hearts and souls of the people."*

Community member

---

practitioners of loko i'a and lo'i kalo, other organizations and government agencies involved in the restoration of loko i'a and wetlands, and scientists to amplify the impact of its work.

Mālama Hulē'ia is committed to creating the stewardship that was a large part of Hawaiian culture. The existing volunteer programs provide opportunities for both education and laulima (many hands) that keep the resources thriving. As described below, community involvement in the restoration and programming is an essential

In addition to working with other organizations involved in loko i'a restoration, Mālama Hulē'ia's approach includes working organizations devoted to preservation and perpetuation of Hawaiian cultural practices and the restoration of natural and cultural resources throughout Hawai'i, such as Hui Maka'āinana o Makana.



From left to right: Punohu Kekaulua, Mālama Hulē'ia staff, Presley Wann, Hui Maka'āinana o Makana President, Sara Bowen Mālama Hulē'ia Executive Director, Jason Makaneole, Mālama Hulē'ia staff

component of the work. Mālama Hulē'ia envisions a literate and engaged community that cares for the environment and cultural practice, which in turn will nourish them in mind, body, and spirit. Research, monitoring, and study undertaken by Mālama Hulē'ia are continually adding valuable knowledge for the restoration of the pond, honoring the spirit of 'ōiwi (Hawaiian ancestry) in every step of the journey.

Mālama Hulē'ia continues to build the next generation of stewards by delivering educational programs that benefit the entire community (Figure 2-2). This is another aspect of the Mālama Hulē'ia approach, as it builds the next generation of stewards who will have firsthand knowledge and experience with the restoration and stewardship of their 'aina. With both an outdoor classroom and an online learning platform, the loko i'a serves as an accessible and vital resource for local schools and visitors. The on-site education program has a strong focus on K-12 students, giving them a sense of place and pride and reinforces the sense of community needed to sustain the island way of life. This living classroom brings together teachers, conservation experts, and students to learn about science, the environment, and Native Hawaiian culture. The online platform, developed in partnership with Kamehameha Schools during the COVID-19 pandemic, has expanded Mālama Hulē'ia's reach, allowing for virtual learning that connects communities both near and far. This platform gives the broader community access to the rich mo'olelo and practices that honor this sacred place, ensuring that the wisdom of the past continues to guide the stewardship of the future.

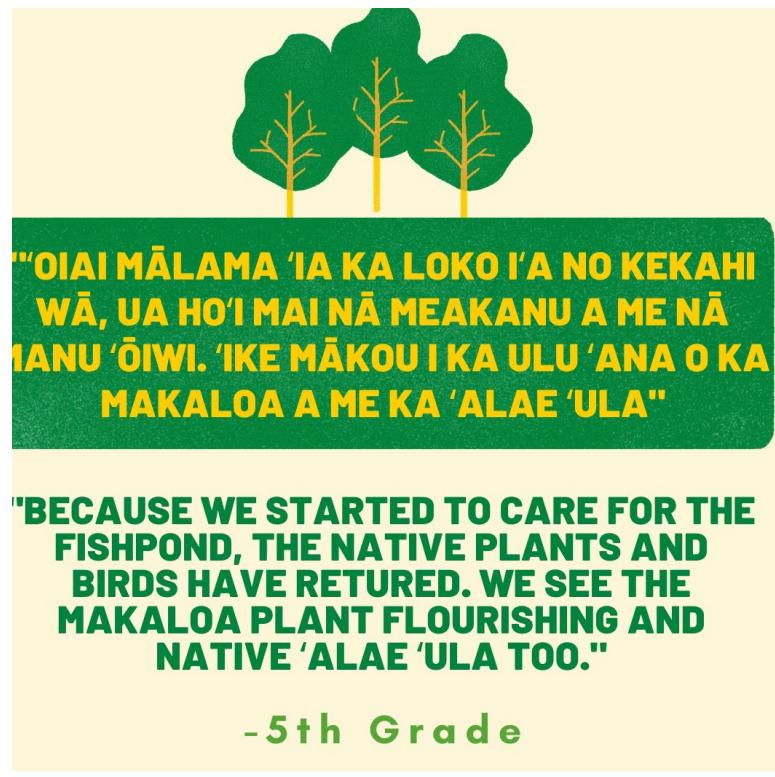



Figure 2-2. Mālama Hulē'ia's educational programming includes educational outreach with local school children, as exemplified by this message from a 5th grader.

## History in the Making—Removing 26 Acres of Mangrove

Mālama Hulē'ia has successfully demonstrated their ability to restore ecosystems and continues to enhance their approach to restoring 'āina. Prior to Mālama Hulē'ia purchasing the property that encompasses Alakoko loko i'a, they had an agreement from the private landowner to remove the mangrove and restore wetlands (Figure 2-3). This agreement provided the legal mechanism that allowed Mālama Hulē'ia to steward the property for 20 years to ensure the restoration was a success.

The mangrove removal process required innovative approaches to make sure the mangrove removal did not impact the cultural resource as well as the endangered species.

Between 2018 and 2021, Mālama Hulē'ia removed 26 acres of red mangrove during the initial phase of the restoration of Alakoko loko i'a (Figure 2-4),

In the summer of 2018, after extensive planning and securing necessary permits, Mālama Hulē'ia initiated the restoration of Alakoko loko i'a with a ceremonial ahu to set clear intentions for the project (Figure 2-5). The physical restoration work commenced in October 2018 through a community workday, involving over 100 volunteers to clear invasive species (Figure 2-6). This collaborative effort fostered community connections while revitalizing the ecosystem. Volunteer workdays continued monthly until March 2020.

By January 2019, the effort gained even more momentum. The mangrove removal included a specialized team known as the 'Menehune Crew,' who focused on sensitive areas near the Alakoko kuapā (wall), taking extra precautions due to the



Figure 2-3. Alakoko loko i'a at the start of the mangrove removal project from around the circumference of the pond.

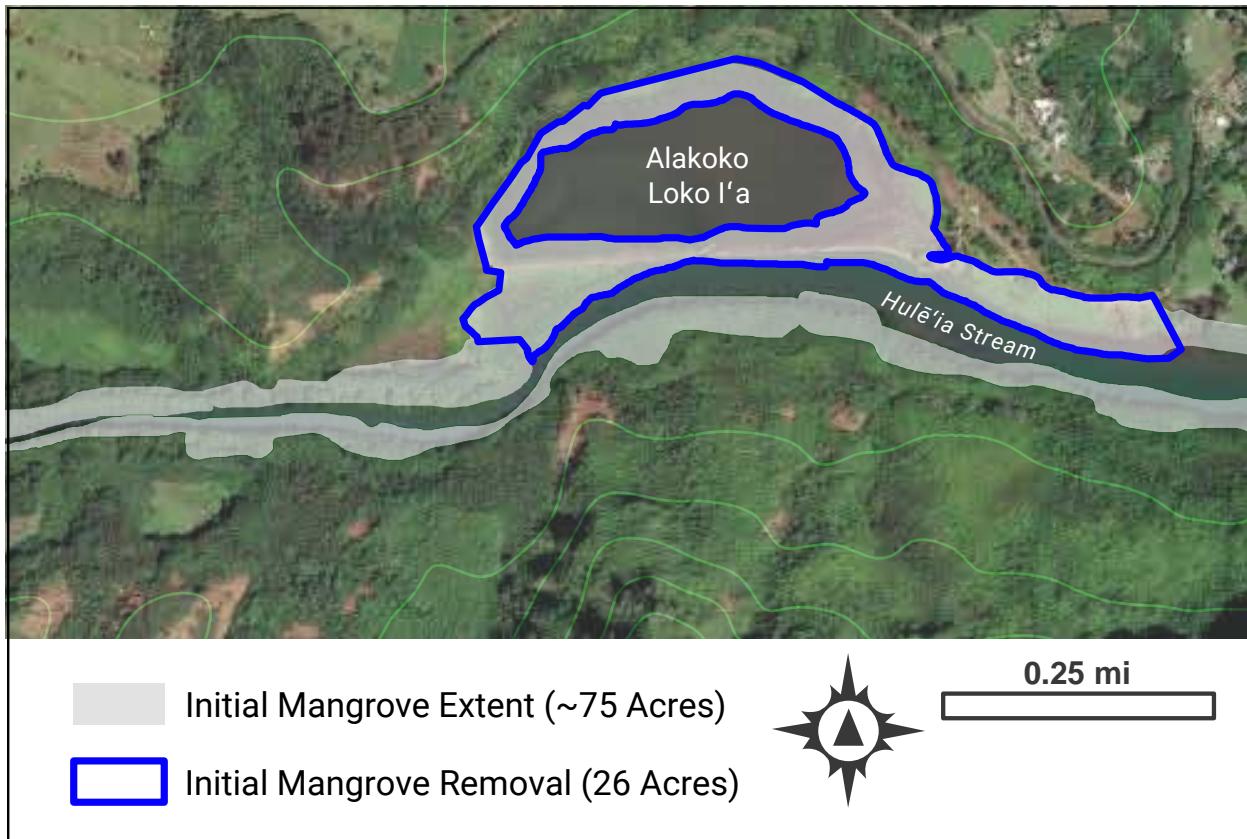



Figure 2-4. Map showing the outline of the area from which mangrove was removed during the initial restoration efforts at Alakoko loko i'a.

archaeological significance of the land (Figure 2-7). Additionally, heavy machinery was employed to prepare the infrastructure, ensuring minimal disruption to the environment (Figure 2-8). A second crew of volunteers were machine operators who cleared the first 10 acres of mangrove surrounding the fishpond, using specialized equipment that could navigate the tricky terrain. As the mangrove

removal progressed to more difficult areas, a piece of machinery, an amphibious excavator, was designed and built specifically for Alakoko. It was built to work in conditions where traditional machines would get stuck in the soft, muddy ground. This unique approach allowed the team to clear large sections of land efficiently, preparing the fishpond for the next phase of ecological restoration.



Figure 2-5. Constructing the ceremonial ahu at Alakoko loko i'a.

When the COVID-19 pandemic halted in-person activities in March 2020, Mālama Hulē'ia adapted their work with the community by transitioning to virtual platforms for educational outreach. Collaborating with the Department of Education, they developed



Figure 2-6. Volunteers removing invasive vegetation near Alakoko loko i'a.

a virtual huaka'i (field trip) that helped maintain community engagement and biocultural education, exemplifying resilience amidst challenges.

In June 2020, Mālama Hulē'ia implemented a controlled burning operation for disposing of mangrove waste. This method, approved by the Department of Health, was selected after thorough research into various disposal options, considering factors such as accessibility, environmental concerns, and the protection of historical sites. Controlled burning was utilized only in hard-to-reach areas, while mulch and compost were created from other mangrove waste, further enriching the restoration process (Figure 2-9).

Mālama Hulē'ia ensured the controlled burns were carefully planned with the Kaua'i Fire Department, adhering to safety protocols and minimizing risks to nearby communities. By gathering ash from the burns for use as mulch and compost, the organization effectively integrated waste disposal into their broader restoration efforts.

Through these creative approaches, Mālama Hulē'ia demonstrated a commitment to preserving both cultural and natural resources while promoting community collaboration and environmental stewardship throughout the Alakoko loko i'a restoration project.



Figure 2-7. Menehune Crew. From left to right: Mark Hubbard, Clayton Egan, Gary Hofacker, Frank Whitman, Jeff Kalani, and Steve Yee.



Figure 2-8. The use of heavy equipment was essential for mangrove removal in most areas in and around the pond (except for the kuapā).

By 2021, the restoration project completely transformed Alakoko loko i'a (Figure 2-10). Removal of the mangrove allowed Mālama Hulē'ia and the community to see the footprint of the pond, unveiling its features including the kuapā (wall), punawai (freshwater springs), kahawai (freshwater streams), and native and Hawaiian plants. Mālama Hulē'ia has used an adaptive management approach to understand the changing conditions following mangrove removal. Mangrove removal also set the stage for wetland restoration along the Hulē'ia River and on the banks of the loko i'a, creating fish passage into the loko i'a and allowed Mālama Hulē'ia to kilo and develop the details and steps to restore the loko i'a.

Wetland plants were installed and spread in areas that were once dominated by mangrove, and native and Hawaiian-introduced plants sprouted or were planted in



Figure 2-9. Volunteers building burn piles for mangrove waste.



Figure 2-10. Before (top) and after (bottom) images showing the transformation of Alakoko loko i'a following mangrove removal.

suitable areas. Through further field analysis, kilo and research through Hawaiian and Western sources, a picture of a functioning loko i'a and its relationship to the ahupua'a and moku is being better understood. The next phases of restoration will be further explained in Chapter 4.

## Protecting and Monitoring Endangered, Threatened, and Native Species

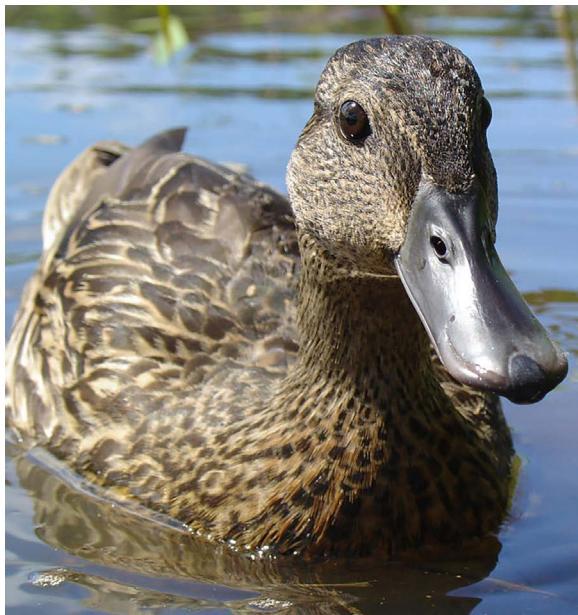
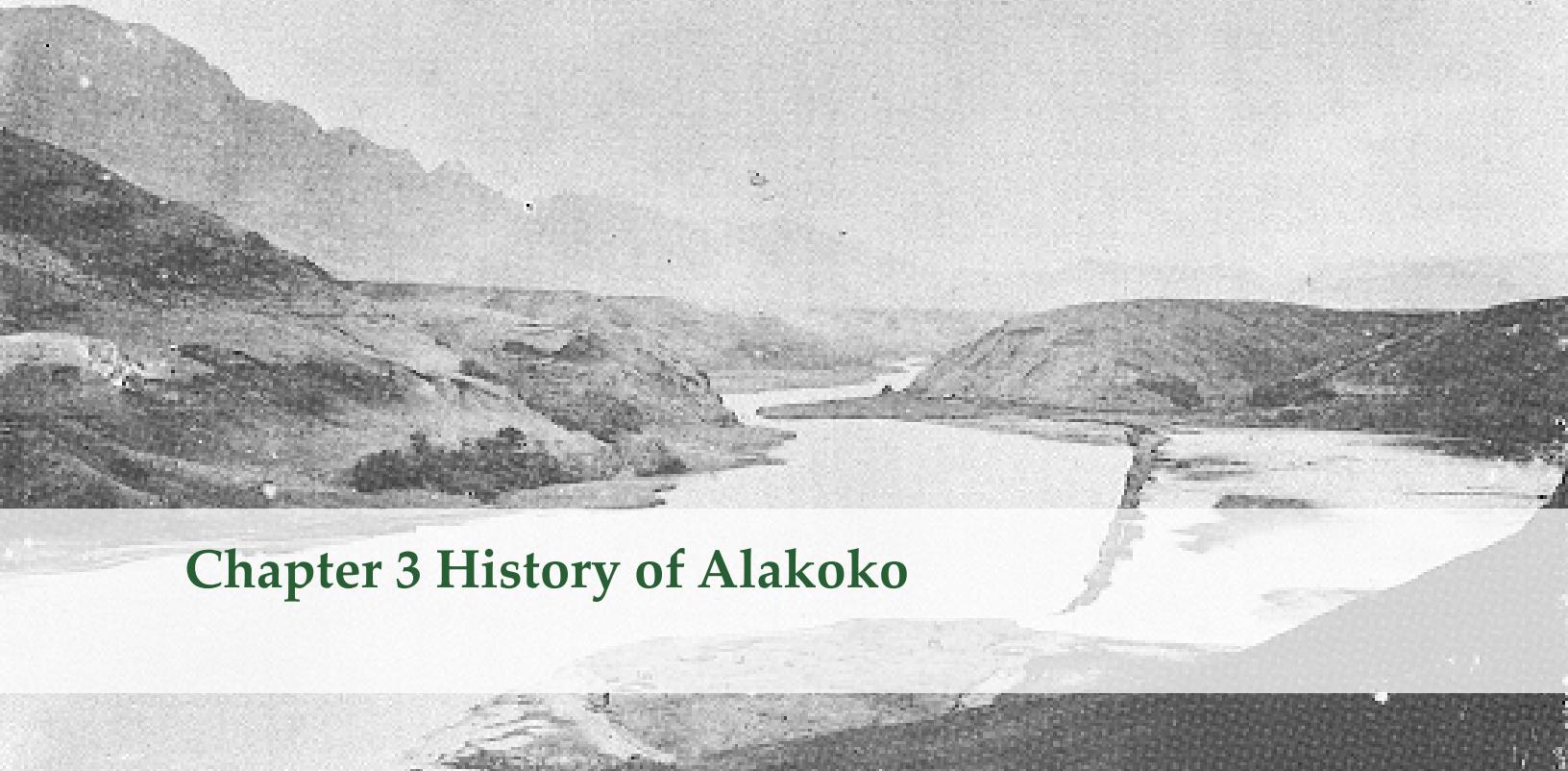



Figure 2-11. Koloa maoli (Hawaiian duck). USFWS photo by Brenda Zaun.

The Hulē'ia River and associated estuarine and marine wetlands provide habitat for endemic waterbirds, migratory birds, and shorebirds (Appendix 2). Removal of the mangrove and restoration of native wetland habitat will benefit the state and federally listed endangered Hawaiian waterbirds (Figure 2-11), the federally endangered Hawaiian hoary bat (*Lasiusurus cinereus semotus*), and culturally important fish and invertebrates. Conservation of important lowland coastal habitat for foraging is essential for the recovery of the Hawaiian hoary bat (USFWS 1998) (Figure 2-12), which includes the restoration of the nahele (forest) on the hillslope above the loko i'a.


Numerous mitigation measures were required for the mangrove removal process to protect cultural and natural resources (Appendix 2). Surveys and monitoring have been ongoing for birds, fish, and overall water quality monitoring (Appendix 4).

Mālama Hulē'ia also has a predator control program and is actively working to establish native and cultural vegetation, which both will benefit endangered and other native species (Appendix 4).



Figure 2-12. 'ōpe'ape'a (Hawaiian hoary bat). Credit: Forest & Kim Starr. CC BY 3.0.





## Chapter 3 History of Alakoko

### Looking Back as the Way Forward

To understand the condition of Alakoko loko i'a, the Hulē'ia River, and the adjacent land before Western contact, Mālama Hulē'ia has drawn from personal accounts, 'ohana (families), mo'olelo (past stories), oli (chants), Hawaiian newspapers, archaeological reports, and cultural interpretations. This section describes and provides references to cultural, archaeological, and historical information and provides a description of the conditions of Alakoko loko i'a prior to Western contact. It is recognized that Mālama Hulē'ia will not be able to recreate the past, rather their objective is to look for indicators that show that they are restoring a functioning loko i'a. The goal is to support native species and uphold the cultural landscape, fostering a harmonious coexistence between the ecological and cultural dimensions. Based on historical data, cultural interpretations, stories, scientific studies, and observations, Mālama Hulē'ia believes that Alakoko loko i'a will serve as an incubator and nursery of native species that will contribute to a highly productive biocultural ecosystem that will result in an amplification of the existing resources, helping to support ecosystem needs from the kahawai (freshwater stream) to the nearshore fisheries and beyond.

Much of the data on Hawaiian loko i'a is less than 100 years old and was analyzed from the western lens of aquaculture and fish production. In order to understand the true societal values of Hawaiian loko i'a, Mālama Hulē'ia is looking at fishpond functions prior to Western contact, focusing on the Hawaiian uses and the impact the loko i'a had within the larger ahupua'a. Both lo'i kalo (taro patches) and loko i'a were impacted by water diversion, a result of the sugar plantation era where water became a commodity manipulated (diverted and ditched). Wai (fresh water) is a catalyst for biological integrity in riparian, wetland, and estuarine ecosystems. It connects via the many tributaries that flow from the uplands and allows for

the biodiversity from the mountain headwaters to the ocean. The interruption of wai flows is ongoing with the ecological deterioration that continues having dire consequences to land, water, and people.

There are mo'olelo of loko i'a that include descriptions of loko i'a as an important nurseries for fish. It suggests that increasing fish populations in a loko i'a can amplify the fishery in the nearshore marine ecosystem to benefit the lawai'a (traditional fisherman). Lawai'a is a Hawaiian term that describes both the act of fishing and the person who engages in it. A lawai'a is someone skilled in traditional fishing methods. The practice of lawai'a is deeply connected to Hawaiian culture where fishing is not just a means of sustenance but also a way of maintaining balance with the natural world.

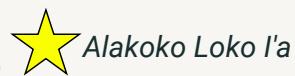
Loko i'a played a crucial role in supporting the work of the lawai'a by providing a sustainable source of fish. These ingeniously designed loko i'a were built along the coastlines of Hawai'i, where ponds were carefully managed and were integral to both the practice of fishing and the community's deep relationship with the ocean. They served as nursery for fish and increased the productivity of the surrounding waters.

It is essential to preserve traditional knowledge as loko i'a are restored, ensuring they are not reduced to modern industrial aquaculture systems. Loko i'a are much more than that—they are an integral part of the ahupua'a (traditional watershed-based land division) system (Figure 3-1). A functioning ahupua'a requires a healthy kahawai, with water flowing from the mountains through kahawai and punawai (freshwater springs), bringing abundance to the land. The integration of land and water offered abundant food production opportunities, as the Hawaiian people understood the intricacies of their environment. This deep knowledge informed the placement of agricultural fields and the diverse types of loko i'a, which were crucial to sustaining their communities.

## Alakoko Prior to Western Contact

Alakoko loko i'a is in the ahupua'a of Niumalu within the moku (district) of Puna (Figure 3-2). The water that flows through this kahawai flows through the ahupua'a of Ha'ikū, Kīpū, Niumalu, Nāwiliwili, and Kalapakī. The area has long been a center of activity on Kaua'i. This 'āina momona (fertile land) is a region known for its abundance (Fechner et al. 2022). At one time, there were at least six loko i'a in the area, adding to the resources of Nāwiliwili Bay. Lo'i kalo and other food crops flourished along the many kahawai and valleys of the nearby Hā'upu mountain range. Hulē'ia River is the longest and largest of the many kahawai that flow (or flowed) into Nāwiliwili, including Pū'ali, Papalinaho, and Nāwiliwili (Fechner et al. 2022). Hulē'ia serves as a vital freshwater artery in the southern portion of Puna. This waterway holds historical significance, being a crucial resource for traditional Hawaiian agriculture and aquaculture. The waiwai (wealth) derived from the Hulē'ia River was shared among several adjacent ahupua'a, illustrating its role in fostering interconnectedness and sustainability across mountain-to-sea land divisions.




Figure 3-1. Hawaiian Ahupua'a. Permission to use from Kamehameha Schools Bernice Pauahi Bishop Estate, Kamehameha Schools Press, Artist: Marilyn Kahalewai, 1974.



### Watersheds and Ahupua'a Boundaries within the Līhu'e Planning District

**Ahupua'a Boundaries**

**Major Streams**



**Watersheds**

**Reservoirs**

**Major Roads**

0 0.5 1 Miles

Figure 3-2. Hawaiian moku and ahupua'a boundaries for Alakoko loko i'a.

The presence of such a large and important loko i'a near the mouth of the Hulē'ia River correlates with the superlative marine resources of Nāwiliwili Bay, which has been noted as one of the most important fishing localities on Kaua'i (Figure 3-3) (Mackenzie et al. 2015). Large numbers of 'ama'ama (striped mullet), moi (Pacific threadfin), and akule (Big-eyed scad, or mackerel) once thrived in Nāwiliwili Bay. The Hulē'ia River was the spawning ground for the 'ama'ama. The 'ama'ama of Nāwiliwili were so prized that, according to the konohiki (overseer of chief's estate) of Alakoko loko i'a in the early 1900s, they "have been tabu [kapu] since ancient



Figure 3-3. Alakoko loko i'a location relative to Nāwiliwili Bay.

times” (Fechner et al. 2022). The movements of schools of fish were monitored from the high point of Kalanipu'u, a pu'u kāhea (calling hill) located on the south side of the entrance to the bay and the river (Figure 3-4). The existence of loko i'a within certain ahupua'a often indicated that the land was 'āina momona (fat or fertile land) and signified an ali'i's (chief's) wealth, power, and ability to provide for the ahupua'a residents (Mackenzie et al. 2015).

## **Western Contact's Impact on Native Hawaiians and Traditional Agriculture**

Hawaiian traditional food production was interrupted at Western contact when ships stopped at the Hawaiian Islands to resupply. Food production changed from a system that only fed the Hawaiian people to one that also supplied a

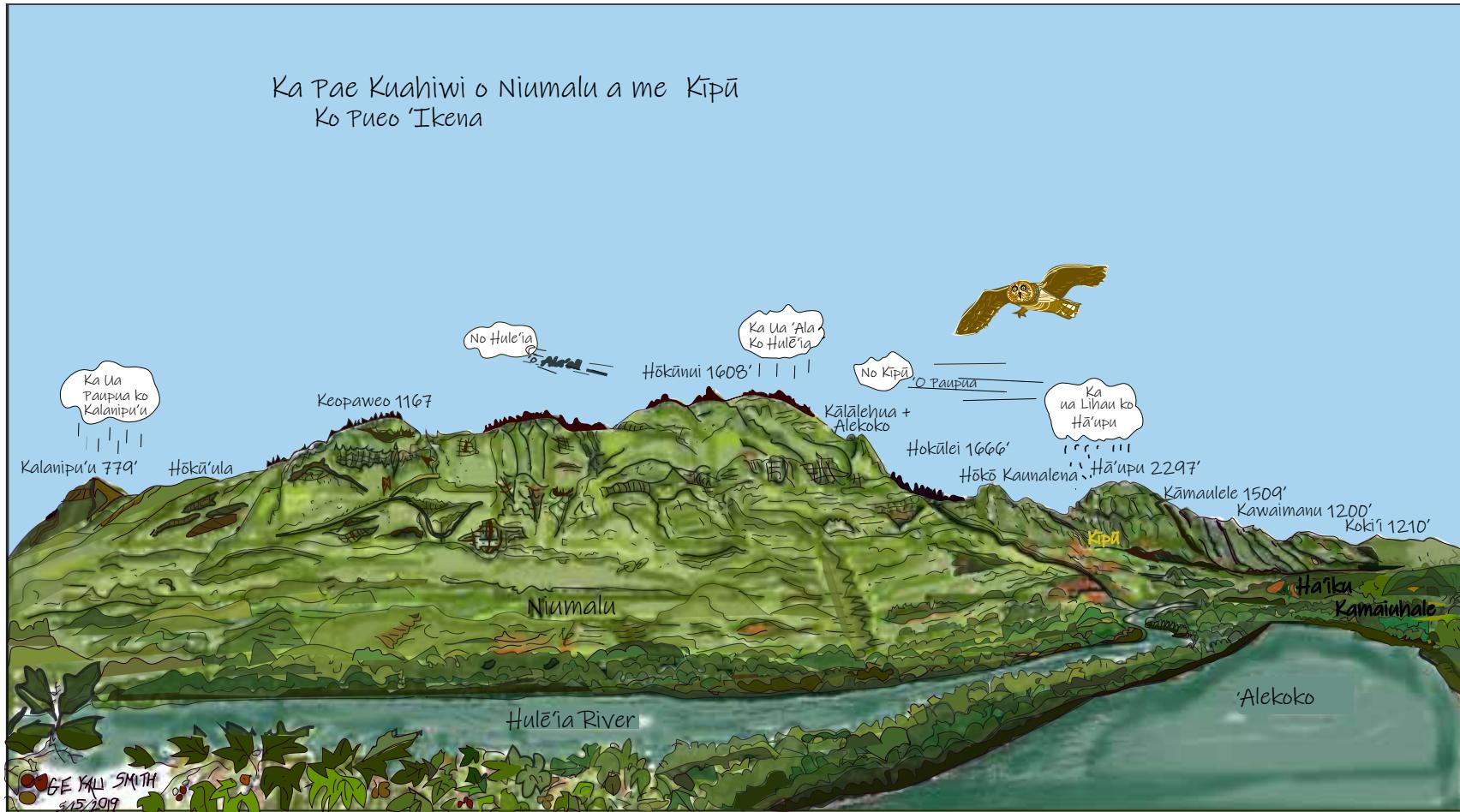
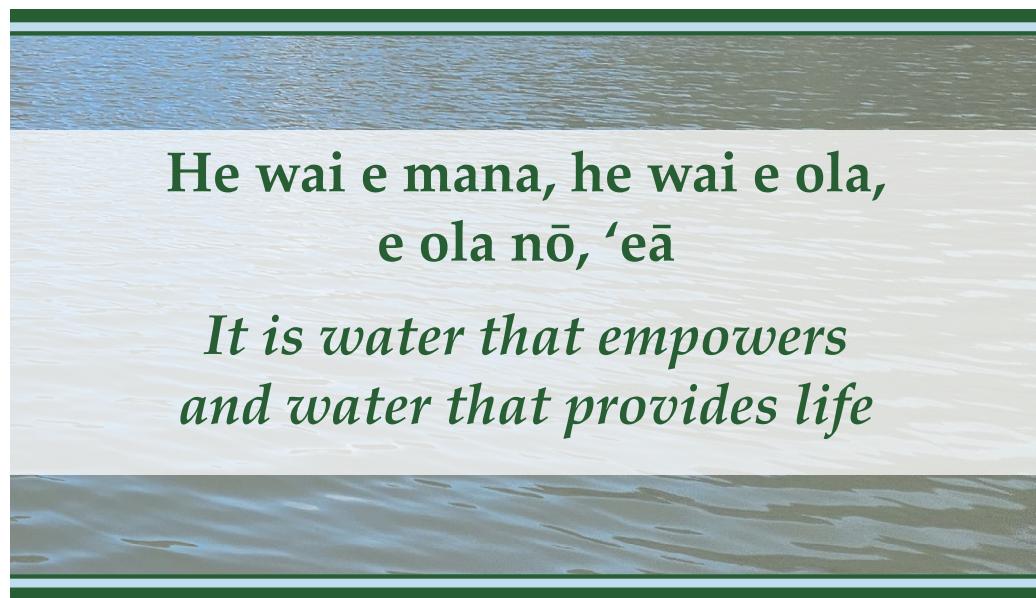



Figure 3-4. Artist GE Kali Smith rendering of Alakoko loko i'a with Hawaiian names and associated winds and rain types. Color added. Kalanipu'u, a pu'u kāhea (calling hill) is located on the left side of the illustration.


multitude of sailing ships. When 'ilahi (Hawaiian sandalwood) was "discovered," the maka'āinana (common people) were taken from their daily work at lo'i kalo and loko i'a and were sent into the mountains to gather sandalwood. This meant that the Hawaiian people were not able to follow the moon calendar, which guided their agricultural tasks and fishing opportunities and ensured that they could produce ample food and resources. Day and night were now occupied by work in the forests and rest was cherished. Disease became prevalent, as the Hawaiian people were exposed to Western germs, and it decimated the native population, further adding to the burden of providing sustenance for the Hawaiian people. Western concepts of land ownership, the sugar industry, and a new god turned the traditional cultural practice upside down and displaced the Hawaiian people physically, spiritually, and emotionally. Both had disrupted the vital connections that bound the Hawaiian people to 'āina (that which feeds). The assault on land, water, and culture continues to this day replaced by a host of other industries.

## Traditional Knowledge: Wetlands and Their Function

Following the arrival of Polynesian voyagers to Hawai'i as early as 900 CE (common era) and no later than 1200 CE (Kirsh 2011), Hawaiians developed complex natural systems that integrated into the ecosystem. They greatly expanded wetland habitats by converting lowland forests and alluvial plains into lo'i (flooded fields) for agro-ecology to cultivate kalo, waterbirds, fish, and invertebrates (Winter et al. 2018). This practice was expanded across the tropical Pacific by the late Holocene (4,000–5,000 years before present). The most recent estimates of the extent of the expansion of wetlands for use in lo'i cultivation suggested that about 31,700 acres (12,824 ha) of lo'i likely existed before European arrival (Hoffman 1991). Hawaiians managed lo'i as a keystone component of Hawaiian socio-ecological systems, viewing the social and ecological components that make up an ecosystem as interconnected, supporting both humans and nature.



"He wai e mana, he wai e ola, e ola nō, 'eā." This oli translates as, "It is water that empowers and water that provides life." This Kaua'i oli explains the importance of water. Wai is considered sacred by Hawaiians. In the past, people using wai from kahawai took only what was necessary. They were expected to share the wai with others. Such practices gave Hawaiians their word for law which is kānāwai (equal



**He wai e mana, he wai e ola,  
e ola nō, 'eā**

*It is water that empowers  
and water that provides life*

sharing of water). Water was so valuable to Hawaiians that the word wai also indicates wealth and waiwai signifies abundance and prosperity.

## History of Alakoko Land Ownership

At the Māhele (land division/privatization) of 1848, Alakoko and the surrounding land was given to Princess Victoria Kamāmalu (Figure 3-5; Appendix 5). It was then transferred to her father, Kekūanāo'a and later to Princess Ruth Ke'elikōlani. In 1880, Ke'elikōlani sold the property to Paul Kanoa and for 106 years the land was owned by the Kanoa family and later the Kanoa Estate. In 1986, the Kanoa Estate sold the property to the Okada Trucking Company (Fechner et al. 2022). Mālama Hulē'ia was able to secure a 20-year lease of the property in 2018 to fulfill the requirements of their first National Coastal Wetlands Conservation Grant and to mālama the property. In 2021, the property was put up for sale. With the assistance of the Trust for Public Land, Mālama Hulē'ia purchased it.

## Alakoko Loko I'a Timeline & History

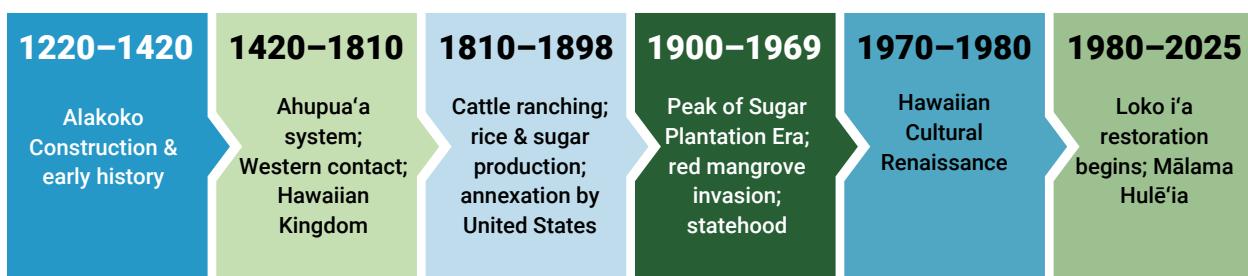



Figure 3-5. Major events in Hawaiian history. Please see Appendix 5 for a full timeline of Alakoko loko i'a's history.

## Invasion of Red Mangrove

In 1902, the Hawai'i Sugar Planters Association brought red mangrove (*Rhizophora mangle*) to Hawai'i when it was planted in southwestern Moloka'i to address erosion from livestock and cultivation. It was introduced to Oahu in Kalihi and He'ea marsh in 1922. Later it was introduced to Kealia Pond on Maui in 1960 when 3,000 propagules were planted to hold down dust when the pond was drawn down (Environment Hawai'i 2015). Red mangrove quickly spread throughout the Hawaiian Islands. By 1977, dense, monotypic stands of mangrove were estimated

to occupy nearly a third of all estuarine intertidal habitat in the state (Environment Hawai'i 2015).



Figure 3-6. Red mangrove roots.



Figure 3-7. Peleke Flores during mangrove removal.

A mangrove infestation creates poor habitat for the native plants and animals of Hawai'i. Fibrous mangrove root mats trap sediment and build land (Figure 3-6). Its dense jungle of roots and branches reduces water flow, traps silt, and blocks out sunlight. Heavy leaf litter and its propagules rob the water of oxygen when they decay. When the bottom litter is thick and the water depth is shallow enough, new propagules take root and increase the density of the monoculture. Meanwhile, prop roots descend from increasingly higher positions on the growing tree, expanding the tree's footprint and enabling it to suck greater amounts of nutrients from the soil and oxygen from the air.

Alakoko loko i'a was almost completely obscured by a red mangrove infestation prior to the start of the mangrove removal project (Figure 2-1, Figure 3-7, and Figure 3-8). The dense thickets of red mangrove shrouded the structure of the loko i'a and archaeologists could not access features such as the walls that had been previously identified in archaeological reports (Kikuchi 1976). Therefore, an archaeological study could not be conducted until after mangrove removal.

At Alakoko loko i'a, red mangrove infested the riparian area and reduced the area of open water in the pond to half its original size. This altered the hydrology of the river and loko i'a, and affected the salinity and dissolved oxygen which in turn altered the aquatic ecosystem. Mangroves displaced many of the native and/or endemic plants which provided habitat, spawning grounds,



Figure 3-8. Alakoko loko i'a was completely surrounded by nearly impenetrable thickets of invasive red mangrove before Mālama Hulē'ia's restoration actions began.

and food for fish, prawns, crabs, and mussels. The red mangrove reduced the productivity and biodiversity within the loko i'a. Mangroves also invaded portions of the open wetlands surrounding the fishpond, limiting the food and nesting areas for endangered waterbirds and other native and endemic species.

## Alakoko Kuapā

Historian and Mālama Hulē'ia board member Jan TenBruggencate authored an article examining the unique structure of the Alakoko kuapā, which has been frequently described yet often misrepresented due to a lack of first-hand inspection (Appendix 6). The kuapā distinguishes itself by combining earthen berms with basalt boulders on the outer river-side, a construction method less common than the all-rock walls typically found in coastal ponds.

William "Pila" Kikuchi noted in 1973 that Alakoko loko i'a was the first brackish-water loko i'a built in the Hawaiian Islands and its construction technique reflects Kaua'i's geological characteristics. Despite conflicting reports regarding its dimensions and structural composition, ongoing restoration work by Mālama

Hulē'ia has revealed that the wall consists primarily of an earthen berm, partially faced with rough basalt stones.

The article addresses debates surrounding the wall's construction materials and methods, including theories that suggest it might consist of cut stones akin to those in the Kikiaola aqueduct. However, TenBruggencate emphasizes that, based on restoration observations, the wall is not entirely made of rock, particularly at its ends, which are predominantly mud and sand.

Historically, many hands have touched the wall, with contributions from commoners and skilled masons across generations, including repairs after significant events like the 1946 tsunami. The wall's design has evolved, with modern replacements for traditional control gates and diverse construction techniques employed over the years.

Archaeologists have conducted limited investigations beneath the wall's surface, revealing ongoing mysteries about its features and historical context. TenBruggencate's article provides an insightful analysis of the Alakoko fishpond wall, capturing the complexities of its structure and the significance of its history.

See Appendix 6 for further information on the kuapā.

## Restoring Wetlands and Ahupua'a

Learning from the past informs efforts to create the best conditions for the present. Mālama Hulē'ia is committed to restoring Hawaiian land management



Part of the kuapā, with some live mangrove left in place until repair and stabilization actions are completed.



A group of students from Chiefess Kamakahelei Middle School remove invasive mangrove seedlings, helping restore native habitat and strengthen the connection between youth and 'āina.

approaches and expanding the understanding of Hawaiian practices in wetland management, water uses, and the ahupua'a system. In 'Ōlelo Hawai'i, the naming of places is reflective of mo'olelo, 'oli, and mele (songs) that bring a great depth of knowledge to the place. Place names are tied to persons, events, places of significance, and topographical and geological features, as well as biogeographical landscapes. As seen in Figure 3-4, there are various names for the winds, the rains, the mountains, rivers, loko i'a, and streams in and around Alakoko loko i'a. The different winds, for example, encourage microclimate conditions and shape the way the rains and sun interact with the environment. They provide clues to understanding the dynamic ecosystem that makes up the ahupua'a. They help to guide the needs on the ground to create ideal conditions for the interdependent components of the ecosystem. Expanding into other terminology found within 'Ōlelo Hawai'i can uncover more details that enables the development of best management practices to restore and steward an area and can better predict how the 'āina will respond.

This includes expanding definitions of wetlands to reflect the biocultural importance of wai. The revival of the Hawaiian names of different types of wetlands will reflect their traditional functions within a biocultural context. By

restoring these names, the cultural significance and ecological roles will be highlighted, making their restoration a more holistic and culturally grounded process. This approach will integrate the traditional understanding of wetlands into the restoration focus, fostering a deeper connection to the land and its history.

The restoration of the ahupua'a will benefit Alakoko loko i'a and the moku (district). The different zones of the ahupua'a work together to provide balance between human needs and environmental sustainability through cultural practices and principles such as aloha (respect), laulima (cooperation) and mālama (stewardship). An ahupua'a generally extends from mountains to the sea, encompassing one or more complete watersheds and marine resources, including both lowland cultivated areas and upland forested regions, providing a variety of resources for the community (see Figure 3-1). These zones recognize people as part of the place, interacting as stewards and users of place. The restoration efforts at Alakoko loko i'a include more than just the loko itself and incorporate wao nahele (inland forest zone), wao kanaka (agriculture zone), loko i'a, muliwai (estuarine zone), kahawai, and kahakai (coastal zone). Restoration efforts include community participation through education and programming, hands-on stewardship, and cultural practices and ceremonies. People are an important component to restore, manage, and learn from 'āina. Alakoko loko i'a is a wahi pana (storied place), yet for Mālama Hulē'ia, it is not seen as a protected area that is closed off to humans as a way to protect it such as refuges and sanctuaries often are. Instead, it is wahi pana integrating pilina (connection).





## Chapter 4 Conceptual Restoration Plan

Mālama Hulē'ia efforts to restore Alakoko loko i'a are founded on past and present experiences and knowledge. Hawaiian cultural practice gained through oral traditions and decades of wahi pana (storied places) restoration will be integrated with modern scientific methods to restore the loko i'a (Hawaiian fishpond) and lo'i kalo (taro patch) system of food production. Despite major agricultural landscape changes and multiple landowners over the last hundred years, Mālama Hulē'ia believes that the project will benefit and enhance the remaining native flora and fauna. The project will build a resilient ecosystem and a harmonious collaboration by integrating Indigenous and western scientific concepts.

Alakoko loko i'a, located on the Hulē'ia River a short distance upstream from Nāwiliwili Bay, is one of the most significant traditional Hawaiian fishponds in Kaua'i. Alakoko is estimated to be 600 years old. A loko i'a is a unique aquaculture system that optimize natural patterns of an ahupua'a. During the 20th century, Alakoko became overrun by invasive red mangrove, leading to significant damage to its kuapā and fundamentally changing its size, hydrology and ecology. Mālama Hulē'ia has been working to restore Alakoko loko i'a since 2018.

The ultimate goal of the restoration is to revitalize the loko i'a as a vital part of the larger ahupua'a (traditional watershed-based land division) system, connecting mauka (towards the mountains) to makai (towards the sea). The loko i'a is one element within this broader ecosystem; it plays a critical role in supporting environmental health: filtering water, cycling nutrients, and nurturing life from the microscopic level to nearshore species. Mālama Hulē'ia's restoration work has deepened understanding of how changes within the loko i'a—down to the smallest organisms—can ripple out to affect ocean waters and the communities who rely on these resources. In doing so, Mālama Hulē'ia strives to bring back the abundance described in mo'olelo (stories): teeming schools of fish, clean and plentiful waters, and an 'āina (land) that feeds both body and spirit. Environmentally, the loko i'a also serves as a bioindicator of a healthy ahupua'a system and a reflection of the land and water stewardship throughout the watershed.

This chapter focuses on the restoration of Alakoko loko i'a (Figure 4-1, Figure 4-2, and Figure 4-3). It includes the goals and objectives that provide the framework that guides the restoration and continued stewardship. It also describes the work that has been completed to date, as well as the phases of the restoration project that are upcoming. Finally, it provides an analysis of the challenges and opportunities in the implementation of the full restoration of the ahupua'a and recommendations for collaboration with neighboring landowners. Chapter 6, titled Kuhikuhi Pu'uone (Architecture or Site Development Plan), focuses on the infrastructure necessary to support the restoration, ongoing stewardship, and community and educational programs that support a functioning loko i'a and ahupua'a.

## Long-Term Commitment to Stewardship

Ownership of the Alakoko property carries tremendous kuleana (privilege and responsibility) that honors both the legacy of this place and its future. Restoring Alakoko loko i'a is not just an ecological undertaking, but the reactivation of a vital cultural resource. As an ancient loko i'a listed on the national and state Registers of Historic Places, Alakoko offers Native Hawaiians and the broader community a unique opportunity to reconnect with ancestral knowledge, learn from the land and water, and revitalize traditional practices that once sustained both people and place.

This restoration is a learning journey. Mālama Hulē'ia embraces adaptive strategies, recognizing that restoration is an evolving process informed by the land itself. Already, the removal of invasive mangrove has revealed punawai (freshwater springs), reopened 'auwai (irrigation channels or ditches), and welcomed the return of native plants, birds, and i'a (fish). These early signs of success reflect the landscape's resilience—and its potential to guide best practices as the vision of a fully functioning loko i'a comes to life.



## Principles and Values

Mālama Hulē'ia's restoration efforts at Alakoko loko i'a are guided by the following values and principles:

- ▶ Repairing the ecosystem functions of Alakoko loko i'a through the application of Hawaiian ecological knowledge coupled with scientific studies and analysis, archaeological preservation, monitoring, and data collection.
- ▶ Increasing the native biodiversity.
- ▶ Integrating climate planning.
- ▶ Supporting native plants and animals, with special attention to the threatened and endangered species that utilize the area as habitat.
- ▶ Working closely with Hawaiian practitioners to influence the collective understanding of loko i'a and its purpose and function.
- ▶ Supporting biocultural research that advances the use of Hawaiian cultural approaches for restoration practices and stewardship of 'āina.

## Planning Process

The National Park Service Rivers, Trails, and Conservation Assistance (NPS-RTCA) program provided technical assistance to Mālama Hulē'ia for the development of this conceptual master plan for Alakoko loko i'a.

The planning process for the loko i'a restoration was led by Peleke Flores, Mālama Hulē'ia's Director of 'Āina & Community Engagement. Through his extensive experience, research, connections with the Hawaiian practitioner network, and work with loko i'a and lo'i kalo across the state, Peleke developed the initial concept for Alakoko with guidance and support from Mālama Hulē'ia staff, other cultural practitioners, and technical experts. NPS-RTCA staff worked with Peleke's initial design to develop the concept graphic (Figure 4-1).



Peleke Flores with Mālama Hulē'ia staff

NPS-RTCA conducted a series of interviews with Peleke to develop the descriptions of the different components of the loko i'a restoration, the phasing, and guidance for the overall vision for the restoration of the loko i'a. On-site visits by NPS-RTCA staff helped further develop an understanding of the restoration process, adaptation opportunities, threats, and needs. Adaptive management principles, including using observations and monitoring of previous restoration actions, are an integral aspect of this plan, and will help Mālama Hulē'ia develop best practices and position them for effective long-term stewardship of Alakoko loko i'a. The



A diagram used to help develop concepts for Alakoko (left). Examining a map showing possible sea level rise and how it may impact Alakoko loko i'a (right).

restoration plan includes conceptual graphics and a set of goals and objectives that will guide management actions.

Once the conceptual restoration graphics and goals and objectives were developed, NPS-RTCA worked with Mālama Hulēia to assess their infrastructure needs in support of the restoration and management of the loko i'a, as well as to provide the education programming and community involvement. This second part of the planning process led to the Kuhikuhi Pu'uone (see Chapter 6).



Sketch of the restoration plan for Alakoko loko i'a generated during the design charrette



Alakoko loko i'a during mangrove removal

## Conceptual Restoration Plan

A loko i'a cannot function on its own. The full restoration of Alakoko loko i'a is only possible within the framework of the restoration of the larger system of which it is a part (Figure 4-1 through Figure 4-3). This system includes the components of the fishpond itself: the kuapā (wall), mākāhā (saltwater inlets/outlets), makawai (freshwater inlets), kuāuna (earthen banks), and ki'o pua (juvenile-fish pond). It includes the larger hydrologic system of the Hulē'ia River, adjacent wetlands, punawai, kahawai (freshwater streams), alawai (main irrigation channel), and 'auwai, as well as lo'i i'a kalo (kalo patch with freshwater aquaculture), and lo'i kalo. The nahele (forest) and dry land areas, including kīhāpai (small garden), māla 'ai (food garden), and māla lā'au (medicine garden), are also essential components of the overall system and provide important functions that support Alakoko loko i'a. A successful and functioning loko i'a is reliant on a healthy and functioning ahupua'a.

This conceptual plan will be a tool to guide Mālama Hulē'ia's restoration efforts at Alakoko loko i'a and may be modified as the restoration progresses and the vision for the loko i'a and its environs is further developed.

## Components of Alakoko Loko i'a

Alakoko loko i'a is approximately 40 acres in size and was formed in a meander of the Hulē'ia River by the construction of a 2,700-ft-long kuapā.

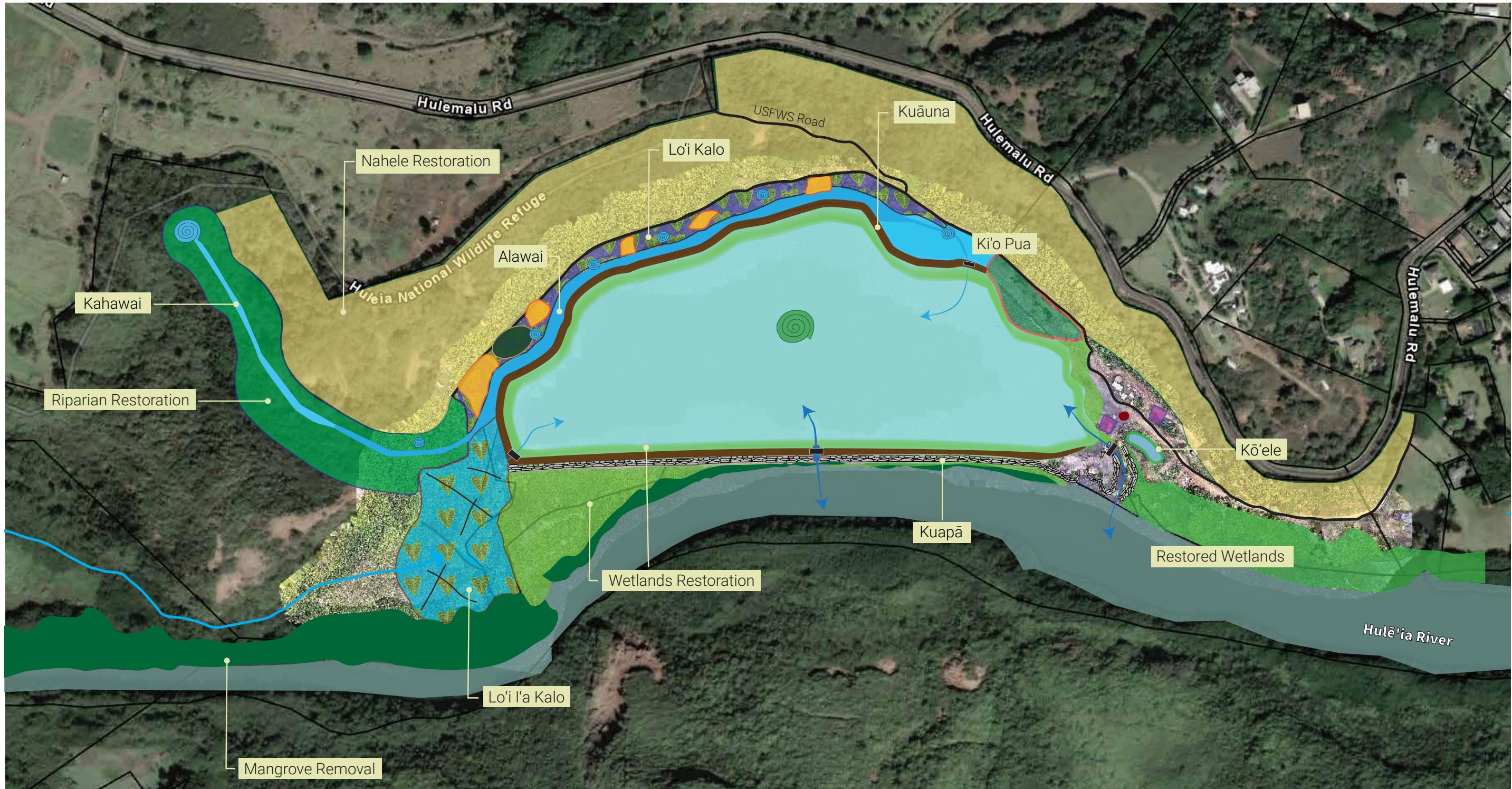



Figure 4-1. Conceptual restoration plan for Alakoko loko i'a.

# Alakoko Loko i'a - Conceptual Restoration Plan Graphic

Mālama Hulē'ia is restoring the Alakoko property for the purpose of loko i'a and ecosystem restoration, preservation, and education in perpetuity. This concept map shows a restored and functioning loko i'a and its components. The plan includes traditional Hawaiian systems that provide native habitat for i'a (fish), limu (aquatic vegetation), waterbirds, and invertebrates while providing food and cultural resources. The Concept Graphic will be used as a planning tool to guide Mālama Hulē'ia in the restoration of Alakoko loko i'a and may need to be modified.

## Alakoko Loko i'a

Alakoko loko i'a is approximately 40 acres in size and was formed in a meander of the Hulē'ia River by the construction of a 2,700-ft-long kuapā. It is filled by brackish water from the estuarine Hulē'ia River combined with wai (fresh water) from punawai and kahawai.

## Kuapā

The Alakoko kuapā is the wall of the loko i'a and is made of pōhaku (stone) and kuāna (earthen material).

## Mākāhā

Saltwater inlet and outlet. One is at the center point of the kuapā and the other is where the fish passage joins the loko i'a. Both will be recreated to replicate the historic aquacultural functions of mākāhā. They allowed juvenile fish to swim freely in and out of a loko i'a while trapping larger fish.

## Kuāuna

Earthen banks border a variety of water systems: loko i'a, kahawai, lo'i, alawai, and 'auwai. Kuāuna form a path between them for access to the different components. The main kuāuna separates the loko i'a from the alawai. Additional kuāuna border the 'auwai, lo'i kalo, and lo'i i'a kalo systems.

## Punawai

Springs that provide fresh water to Alakoko and increase its biodiversity as the pond has a different salinity than the neighboring Hulē'ia River.

## Kahawai

A stream that provide fresh water into the loko i'a system. A small kahawai flows from the punawai on the hillslope at the west end of Alakoko loko i'a.

## Riparian Restoration

Riparian areas surround waterways such as streams. Riparian areas need invasive species control efforts and revegetation treatments to establish and maintain native vegetation.

## Alawai

The alawai is the main irrigation channel that brings wai into Alakoko loko i'a. It flows along the north side of the pond.

## Ki'o Pua

A ki'o pua is a pond for raising baby fish (fry). The alawai will flow directly into the ki'o pua before it enters the loko i'a.

## Makawai

Freshwater inlet. One flows into Alakoko at the west end of the loko i'a near where the kahawai is and the other is where water from the ki'o pua enters Alakoko. Both will be spanned by bridges and will provide fresh water to the pond, which is critical for phytoplankton, i'a, and other aquatic organisms.

## Kō'ele

A small pond, reserved for a chief, where fish are kept alive until required.

## Lo'i Kalo

A flooded terrace that is part of a Hawaiian agriculture system for growing kalo. Wai flows through the lo'i, and exits back into the 'auwai. The lo'i will provide traditional foods for the local community, create important bird habitats and contribute to the overall biodiversity of the area.

## Lo'i i'a Kalo

Lo'i i'a kalo are a type of lo'i that includes fish aquaculture in addition to kalo cultivation. They generally require more wai input than other kalo patches. The low area immediately southwest of the loko i'a is targeted for the development of lo'i ia kalo.

## Māla 'Ai

Cultivated food gardens located in dryland areas around lo'i. Māla 'ai will provide traditional foods to the community.

## Māla Lā'au

Medicine garden with vegetation that have traditional medicinal uses.

## Nahele

Forested area on the hillslope above Alakoko loko i'a. It currently consists of mostly nonnative invasive plants that negatively impact water flow and erosion, harbor pests, and restrict the growth of native plants. After restoration, the nahele would become a mixed agroforestry system that includes native and endemic species, and kinolau (ceremonial use) and hula plants.

## Hala Grove

An established hala grove (Pandanaceae) is located along the border of the loko i'a.

## Ahu

The ahu is the altar or shrine that welcomes people to this wahi pana (storied place). It was created for Alakoko at the beginning of the restoration project to provide the spiritual connection to support the mission of Mālama Hulē'ia.

## Wetlands - Restored

The restored wetlands are located where mangrove has been removed and native wetland plants have been restored. Future wetland areas require invasive plant removal.

## Plant Nursery

The nursery will be easy to move and adjust in size and location based on restoration needs.

## Live Mangrove Wall and Mangrove Removal

Some mangrove trees were left in place to stabilize the kuapā until repairs could be completed. These trees will be removed at the end of kuapā restoration. Mangrove removal will continue upstream.

## Not Shown in Graphic

### 'Auwai

Irrigation channels or ditches bring wai to lo'i kalo and lo'i i'a kalo as well as to Alakoko itself.

### Kīhāpai

Small bordered gardens located in dryland areas around the lo'i.

### Kuhikuhi Pu'uone

The architecture and buildings will provide necessary infrastructure to manage Alakoko loko i'a as well as provide outreach and educational programming.

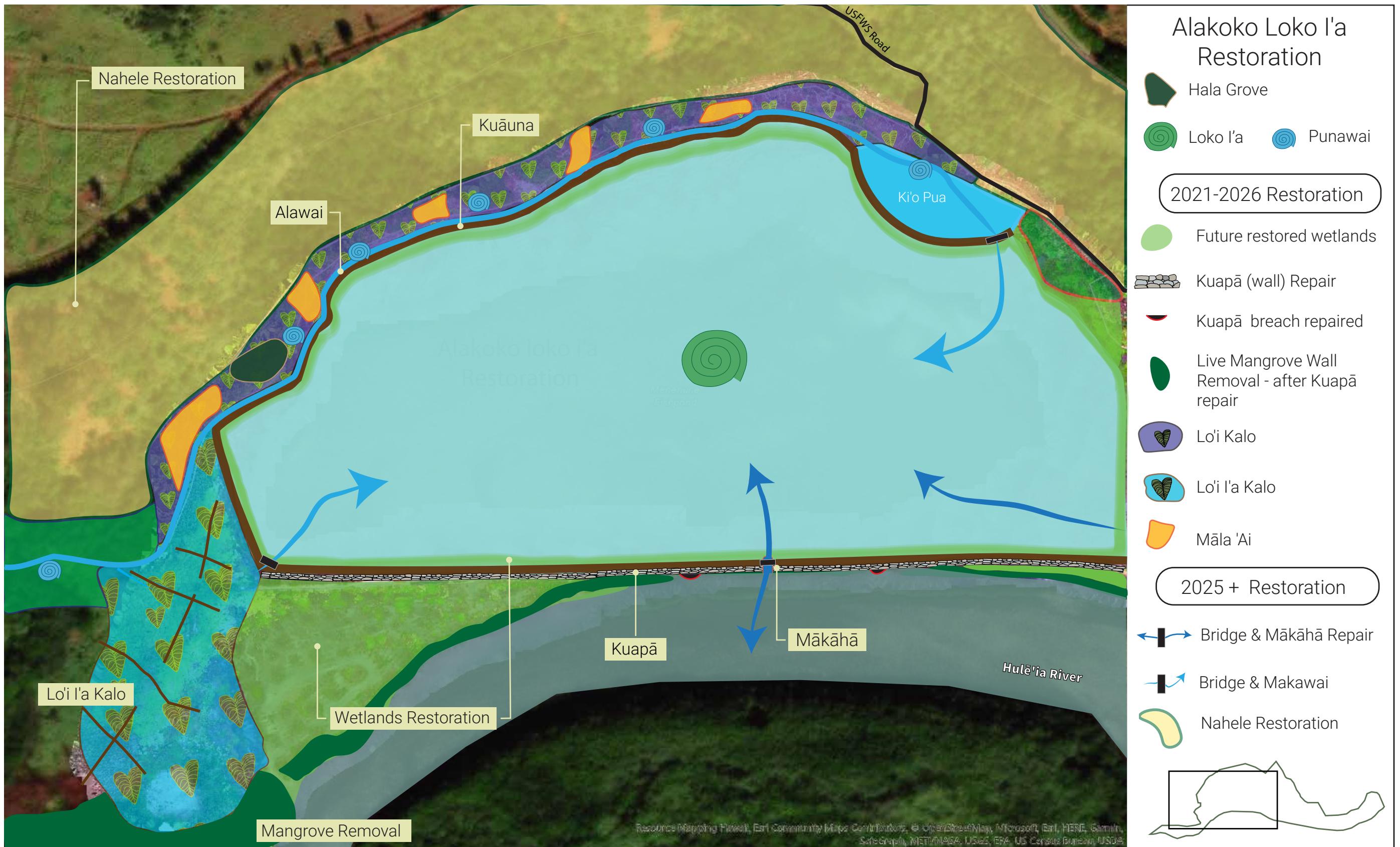



Figure 4-2. Zoom view of the conceptual restoration plan for Alakoko loko i'a showing the west side.



Figure 4-3. Zoom view of the conceptual restoration plan for Alakoko loko i'a showing the east side.



Restoration of the kuapā is central to the healing of Alakoko loko i'a as well as to that of members of local communities. Traditional cultural practitioners who are skilled in uhau humu pōhaku (traditional dry set masonry) are hosting workshops to build local expertise in these techniques. Events such as E Kū Ana Ka Paia ("the wall will stand") that was held in 2023 not only contribute to the revitalization of Alakoko loko i'a, but also builds and strengthens local communities and their ties to the land and to the water. For more information, see Appendix 4.



The mākāhā on the east side of Alakoko

## Alakoko Loko I'a

The restoration of Alakoko loko i'a began with the removal of 26 acres of red mangrove between 2018 and 2021. The loko i'a is filled by brackish water from the estuarine Hulē'ia River with wai (fresh water) inputs from punawai and kahawai. The kuapā forms its southern boundary with kuāuna (earthen banks) surrounding the entire loko i'a. Water flow in and out of the loko i'a is through mākāhā (saltwater inlets/outlets) and makawai. The interior (pond-side) of the kuapā and the kuāuna were reinforced with sediment dredged from the bottom of the pond. These sloped margins of the pond will be planted with native wetland plants to prevent erosion and establish wetland habitat for endangered Hawaiian waterbirds. Continued vegetation management around the circumference of the loko i'a is needed to ensure that reinfestations of red mangrove do not occur, and that native vegetation is established.

## Kuapā

The Alakoko kuapā is made of pōhaku (stone) and kuāna (earthen material) (see Appendix 6). The kuapā restoration is still ongoing. Two breaches along its length need to be repaired and a remnant live mangrove wall was left in place until repairs can be completed. The remnant live mangrove wall will be removed once repairs are completed, most likely in 2026. Historically, the kuapā had a mākāhā approximately halfway down its length, and this will be restored as well.

## Mākāhā

Alakoko loko i'a has two mākāhā. One is at about the center point of the kuapā and the other is where the fish passage joins the loko i'a on the east or downstream side of the pond. Both will be recreated with bridges over



The kuāuna during restoration actions



The fish passage and mākāhā

them and sluice gates to replicate the historic aquacultural functions of the loko i'a. They allowed juvenile fish to swim freely in and out of a loko i'a while trapping larger fish.

## Fish Passage

A channel, or fish passage, was recreated at the east side of the loko i'a to connect Alakoko loko i'a with the Hulē'ia River. With the sediment that had accumulated over time, Alakoko was cut off from the river by a mud flat at low tide. Following the removal of the mangrove debris, the fish passage was further widened to allow i'a (fish) to swim in and out of the loko i'a. The fish passage connects to the river through the eastern mākāhā.

## Kuāuna

Earthen banks border a variety of water systems: loko i'a, kahawai, lo'i, alawai, and 'auwai. Kuāuna separate the water systems and form a path between them for access to the different components. The main kuāuna separates the loko i'a from the alawai. Additional kuāuna border the 'auwai, lo'i kalo, and lo'i i'a kalo systems.

## Wetlands

Wetlands are an integral part of any estuarine system. Mangrove removal has allowed wetlands to be restored with native vegetation, providing habitat for native fish, other aquatic organisms, and waterbirds. Large areas of wetlands are located both downstream and upstream (east and west, respectively) of Alakoko loko i'a. The downstream wetland was restored between 2018 and 2021 and the upstream wetland needs mangrove removal followed by restoration treatments. Wetlands are also present along the margins of the loko i'a. All wetland areas will need continued management to ensure that they are not repopulated by red mangrove.



A punawai with kalo



A kahawai with area that needs riparian restoration

Native plant species include makaloa, mau'u 'aki'aki, 'ākulikuli, 'ahu'awa, neke, and other native sedges and rushes. (See Appendix 4.)

## Punawai

Punawai provide fresh water to Alakoko and increase its biodiversity as the pond has a different salinity than the neighboring Hulē'ia River. Many punawai reemerged after mangrove removal around the circumference of Alakoko loko i'a. Many of these springs are in lowland areas near the pond itself, but an important upland punawai is on the hillslope west of Alakoko. This spring flows into Alakoko from a small kahawai that descends the hillside.

## Kahawai

Kahawai provide fresh water into the loko i'a system. A small kahawai flows from the punawai on the hillslope at the west end of Alakoko loko i'a. Another kahawai flows from the west towards Alakoko.

## Riparian Restoration

Riparian areas surround waterways such as streams. Riparian areas need invasive species control efforts and revegetation treatments to establish and maintain native and Polynesian-introduced non-invasive plants. The palette of native and Polynesian-introduced non-invasive plants will be developed with biocultural technical experts to address erosion, and water filtration needs, and to provide ecosystem services.

## Alawai

The alawai is the main irrigation channel that brings wai into Alakoko loko i'a. It flows along the north side of the pond. The kuāuna on its north bank will be developed into māla and lo'i.



An 'auwai during restoration



The kō'ele near the east end of the loko i'a



Lo'i kalo

## 'Auwai

Irrigation channels or ditches bring wai to lo'i kalo and lo'i i'a kalo as well as to Alakoko itself. They are located along all margins of the loko i'a except the kuapā.

## Ki'o Pua

A ki'o pua is a pond for raising baby fish (fry). The alawai flows directly into the ki'o pua before it enters the loko i'a. At Alakoko, the ki'o pua is located at the northeastern side of Alakoko near the canoe launch and māla lā'au.

## Makawai

Alakoko loko i'a has two makawai. One flows into Alakoko at the west end of the loko i'a near where the kahawai is and the other is where water from the ki'o pua enters Alakoko. Both will be spanned by bridges. Freshwater inputs are critical for phytoplankton, i'a, and other aquatic life.

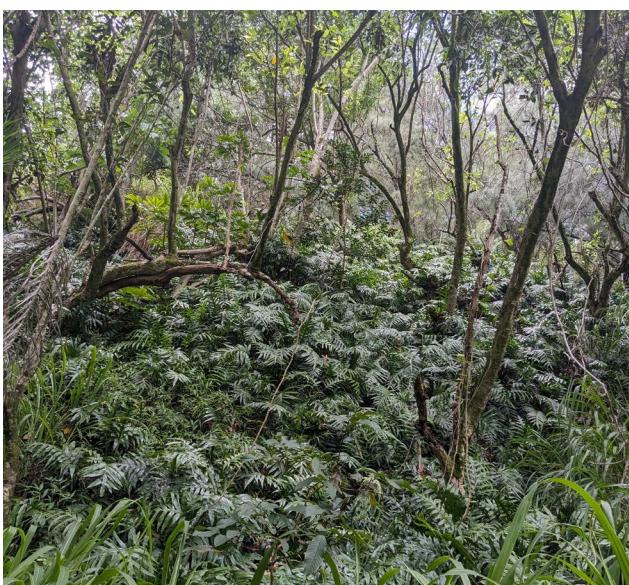
## Kō'ele

A small pond, reserved for a chief, where i'a are kept alive until required.

## Lo'i Kalo

A flooded terrace that is part of a Hawaiian agriculture system for growing kalo. Wai flows through the lo'i and exit back into the 'auwai. Lo'i kalo are integral parts of the agricultural and aquacultural systems of Alakoko loko i'a. The lo'i will provide traditional foods for local community, create bird habitat, and contribute to the overall biodiversity. Lo'i kalo will be developed on the north side of Alakoko.

## Lo'i I'a Kalo


Lo'i i'a kalo are a type of lo'i that includes i'a aquaculture in addition to kalo cultivation.



Māla 'ai and kalo



Māla lā'au



Nahele

They generally require more wai input than other kalo patches. The low area immediately southwest of the loko i'a is targeted for the development of lo'i i'a kalo.

### **Māla 'Ai**

Cultivated food gardens will also be located in dryland areas around lo'i. Māla 'ai will provide traditional foods to the community.

### **Māla Lā'au**

Māla lā'au will be established in an area on the west side of Alakoko loko i'a where there has been volunteer recruitment of native vegetation that have traditional medicinal uses. The presence of plants such as 'uhaloa (mallow), 'ilima (yellow mallow), and pōpolo (glossy nightshade) suggest that this site may have been used historically as a māla lā'au.

### **Nahele**

The nahele is found in the hillslope above Alakoko loko i'a. It currently consists of mostly nonnative invasive plants that negatively impact water flow and erosion, harbor pests, and restrict the growth of native plants.

Restoration of the nahele would also include the restoration of a punawai near the top of the hill close to Hulemalu Road and the kahawai that flows from it.

Needed restoration treatments include removal of nonnative plants as well as trash that has been dumped from Hulemalu Road, followed by the planting of native and culturally appropriate plants and fruit trees.

After restoration, the nahele would become a mixed agroforestry system that includes native and endemic species, and kinolau (ceremonial use) and hula (Hawaiian dance form) plants. The nahele could also supply plant materials



Nahale near the kahawai



Hala grove



Kihapai in the Kuhikuhi Pu'uone

for cordage, traditional hale, and other traditional Hawaiian uses for the community.

### **Hala Grove**

An established hala grove (screwpine, *Pandanus*) is located along the border of the loko i'a. The lauhala (Pandanus leaves) are used to weave mats, baskets, and other utilitarian uses.

### **Kihapai**

Kihapai (small bordered gardens) will be located in dryland areas around the lo'i. These gardens will provide food for the community and contribute to the overall biodiversity of the Alakoko system.

### **Ahu**

The ahu is the altar or shrine that welcomes people to this wahi pana (storied place). It was created for Alakoko at the beginning of the restoration project to provide the spiritual connection and to support the mission of Mālama Hulē'ia.

### **Plant Nursery**

The native plant nursery will be used to propagate vegetation for restoration efforts. It will be easy to move and adjust in size and location based on restoration needs.

### **Kuhikuhi Pu'uone**

The architecture and buildings will provide necessary infrastructure to appropriately manage Alakoko loko i'a as well as provide educational programming and outreach to the community. It will contain a hale hālāwai (meeting house), hale kuahui (maintenance facility), hale kuke/lumi ke'ena (kitchen house and office building), hale kia'i (caretaker housing), and other facilities. (See Chapter 6.)



Restored wetlands near Alakoko

## Restoration Goals and Objectives

These goals and objectives offer a comprehensive framework for restoring Alakoko loko i'a and the interconnected systems that sustain it. Rooted in traditional Hawaiian knowledge and supported by contemporary conservation strategies, they provide clear guidance for achieving ecological, cultural, and community outcomes.

Each goal is linked to specific actions—ranging from native habitat restoration and predator control to hydrological management and community engagement. Together, these objectives form the backbone of a multifaceted restoration effort shaped by cultural values, informed by science, and aligned with permitting requirements and environmental protection policies. Success will depend on thoughtful sequencing, shared stewardship, and a commitment to learning along the way.

### Goal 1:

#### **Invasive plants Are Removed from the Alakoko Property and Watershed**

The elimination of invasive plant species that threaten the health of the ecosystem is the foundational goal of the Alakoko loko i'a restoration. Red mangroves, which have proliferated in the area, alter water flow and outcompete native vegetation. Red mangrove control requires both short-term and long-term strategies to ensure

the return of a native ecosystem that is resilient and supports native plants and wildlife for generations to come.

Between 2018 and 2021, Mālama Hulē’ia removed red mangroves on 26 acres on the Alakoko property, which represented the majority of the mangrove infestation at the site (see Chapter 2). Subsequently, Mālama Hulē’ia has transitioned to a maintenance-level treatment strategy for this invasive plant, requiring constant kilo (observation) and coordinated response to prevent reinfestation.

- ▶ **Objective 1:** New mangrove plants, their propagules, and other invasive plants are removed to prevent them from reproducing on the property.
- ▶ **Objective 2:** Mangroves are continuously removed throughout the Hulē’ia watershed utilizing community stewardship and involvement of partner organizations to obtain a mangrove-free watershed.
- ▶ **Objective 3:** Other nonnative plant species are monitored and removed if found to be a threat to healthy native ecosystems.

## Goal 2:

### Native and Culturally Significant Plants Are Established Throughout the Alakoko Property to Reestablish a Functioning Ahupua’ā

The restoration of Alakoko loko i'a includes not only the physical structure of the fishpond itself, but also the broader ecological system of the surrounding ahupua'a, including restoration of native and culturally significant plants. Hawaiian lo'i systems play a vital role in restoring a functional loko i'a. Water movement through lo'i systems attracts birds and enriches the water with nutrients, providing ideal conditions for phytoplankton growth, which helps to provide the water chemistry that attracts fish into the loko i'a. The restoration will reconnect wetlands with their traditional names and roles, acknowledging the functional knowledge carried in ancestral naming practices. By reintroducing these plants and systems, Mālama



The kuapā with mākāhā and live mangrove wall that will be removed during the final stages of its restoration

Hulē'ia aims to restore the balance and functionality of the ahupua'a, ensuring its sustainability for future generations.

- ▶ **Objective 1:** Healthy native habitats and ecosystems are restored through revegetation with a diverse array of native and Hawaiian introduced (canoe) plants.
- ▶ **Objective 2:** Native wetland plant species are planted to restore wetland habitats and support biodiversity.
- ▶ **Objective 3:** Noninvasive Hawaiian agricultural, utilitarian, and medicinal plants are planted in specified locations within the Alakoko property.
- ▶ **Objective 4:** Water and nutrients to plants are supported through the establishment and maintenance of a Hawaiian loko i'a system of alawai, 'auwai, lo'i kalo, and ki'o pua.
- ▶ **Objective 5:** Traditional Hawaiian names will be reestablished for wetlands and features to reflect their functional roles and carry forward the knowledge of how these places were once used and understood.

### Goal 3:

#### Hydrological Connectivity and Water Quality Are Restored to Support a Traditional Hawaiian Ahupua'a System

Hydrological connectivity is a critical aspect of the Alakoko loko i'a restoration and is essential for maintaining a functioning ecosystem within the broader framework of the ahupua'a system. The movement and management of wai through traditional water systems, including through alawai, 'auwai, lo'i, and ki'o pua systems, to create a healthy loko i'a environment connected to the rest of the ahupua'a plays a key role in ensuring that the loko i'a is sustainable and is integrated within the surrounding watershed. The goal aims to restore the natural flow of freshwater through the lo'i system surrounding the loko i'a. By restoring these crucial water flows, Mālama Hulē'ia aims to ensure the loko i'a functions as a thriving, interconnected component of the larger ahupua'a system, providing both ecological benefits and cultural value.

- ▶ **Objective 1:** Water quality and water quantity are measured to guide restoration and management decisions.
- ▶ **Objective 2:** The historic alawai and 'auwai are restored and maintained.
- ▶ **Objective 3:** In partnership with USFWS, reconnecting Papākolea kahawai to the Alakoko system is accomplished.
- ▶ **Objective 4:** Fish passageways will be restored between kahawai and the loko i'a to benefit native fish.



The ki'o pua with Alakoko loko i'a in the background

- ▶ **Objective 5:** The upland punawai and kahawai riparian areas are restored to improve the hydrological system and encourage recharge.
- ▶ **Objective 7:** Abundance of phytoplankton and zooplankton is monitored to ensure a healthy planktonic ecosystem. Adaptive management strategies will be used to maintain balance. Freshwater flow through traditional aquaculture systems will help promote phytoplankton growth, supporting the overall health of the loko i'a.

#### **Goal 4:**

#### **The Alakoko Kuapā, Kuāuna, and Pond Depths are Restored to Pre-Mangrove Conditions**

Restoring the structural integrity of Alakoko loko i'a involves repairing its physical boundaries and water management systems to support a healthy, functional ecosystem. This goal aims to return the loko i'a to conditions prior to invasive mangrove growth, which disrupted natural hydrology, deposited sediment, and altered the physical structure of the pond. Central to this effort is the restoration of the Alakoko kuapā, the primary barrier between the loko i'a and surrounding environment. The kuapā will be repaired using traditional Hawaiian uhau humu pōhaku (drystack masonry), led by cultural practitioner Peleke Flores and supported by archaeological documentation and a historic preservation plan.

In addition to restoring the wall, accumulated sediment and organic debris will be removed and repurposed to reinforce the earthen kuāuna and stabilize the boundary with the alawai. This includes shaping a gentle interior slope within the loko i'a to support future wetland restoration. Two mākāhā and two makawai will also be repaired to regulate water flow and maintain hydrological function. These

actions aim to ensure the fishpond can hold stable water levels and withstand natural fluctuations, including high tides and periodic flooding.

Ongoing monitoring and adaptive management will be guided by site conditions and observed environmental changes, supporting the long-term resilience of Alakoko as a thriving cultural and ecological resource.

- ▶ **Objective 1:** The historic kuapā, will be restored, using traditional Hawaiian uhau humu pōhaku following archaeological documentation.
- ▶ **Objective 2:** Accumulated sediment and organic debris will be removed and used to reinforce the earthen portion of the kuapā, the kuāuna surrounding the loko i'a, including that which separates the alawai from the loko i'a.
- ▶ **Objective 3:** The wall height will be raised to contain high water levels resulting from high tides along with flood events.
- ▶ **Objective 4:** The two mākāhā in the kuapā and two makawai will be restored.
- ▶ **Objective 5:** Future water level scenarios due to climate change, high tides, and flood events will be planned for through monitoring and kilo.
- ▶ **Objective 6:** Kilo and adaptive management will ensure the long-term sustainability of the fishpond as a thriving cultural and ecological resource.

## Goal 5:

### **Hawaiian Place-based 'Āina Education Supports Community Involvement, Stewardship, and Research**

Hawaiian place-based education is central to the restoration and long-term stewardship of Alakoko loko i'a. By integrating traditional cultural practices with biocultural restoration principles, the educational programming at Alakoko creates lasting connections between students, the broader community, and the 'āina. This



Mālama Hulē'ia educational programming at Alakoko loko i'a

approach not only supports the ecological and cultural restoration of the loko i'a, but also cultivates future generations of stewards, researchers, and community leaders.

- ▶ **Objective 1:** New educational materials are developed as the pond is restored that will reflect on its revitalization, and how biocultural restoration practices have reestablished a functioning loko i'a.
- ▶ **Objective 2:** Traditional Hawaiian management and sustainability practices are incorporated into curriculum materials to ensure that students understand the integral connection between people and place.
- ▶ **Objective 3:** Students actively participate in the restoration process by assisting with data collection, planting native species, mapping, and removing invasive species, providing them with hands-on learning experiences.
- ▶ **Objective 4:** Themes of community-based stewardship are incorporated into the education system at the primary and secondary level.
- ▶ **Objective 5:** Curriculum development and community efforts focus on nurturing the relationship between people and place.
- ▶ **Objective 6:** Mo'olelo and cultural connections to waterbirds and other native species will be highlighted in curriculum materials to promote an understanding of the relationships between the Hawaiian people and native wildlife.

## Goal 6:

### A Predator Control Program Will Be Implemented Using Adaptive Management Strategies

Effective predator control is essential to the Alakoko loko i'a restoration, ensuring that the restored environment remains a safe and supportive habitat for endangered waterbirds and other native wildlife. Invasive predators, such as feral pigs, cats, rodents, and barn owls, pose ongoing threats and require targeted, evolving management strategies. As native wildlife returns and restoration efforts expand, so too does the need for responsive and adaptive predator control.



Electric fencing

- ▶ **Objective 1:** An adaptive management plan for predator control targeting feral pigs, feral cats, rodents, and barn owls at Alakoko will be refined and implemented in partnership with key predator-control-focused organizations.
- ▶ **Objective 2:** Fencing will be utilized to exclude pigs from specific restoration areas, particularly those used by endangered waterbirds. Fencing may include a perimeter pig-proof fence and electric fencing within exclusion areas. Additional electric fence areas will be established as needed.
- ▶ **Objective 3:** Mālama Hulē'ia will stay current with emerging pest threats on Kaua'i, with a focus on the Alakoko area, and test appropriate control strategies.
- ▶ **Objective 4:** Continue testing and implementing best management practices for coconut rhinoceros beetle (CRB), a species that was found at Alakoko in 2024, along with those for other pests of concern.

## Goal 7:

### Climate Adaptation Strategies Are Implemented to Build Resilience

It is essential that the Alakoko loko i'a restoration incorporates strategies for long-term climate resilience in order to proactively adapt to the impacts of climate change.

The implementation of climate adaptation strategies will be informed by the indicators outlined in Chapter 5 and tailored to meet the specific needs of Alakoko



Test lo'i kalo plots adjacent to a punawai

and its interconnected systems. By restoring and enhancing the ecological functions of the loko i'a, watershed, and ahupua'a, the resilience of these systems will be enhanced.

- ▶ **Objective 1:** Adaptive climate resilience strategies are implemented as outlined in Chapter 5.
- ▶ **Objective 2:** Resiliency of the ecosystem will be enhanced through restoration and stewardship actions
- ▶ **Objective 3:** Climate trends will be monitored, and research will be used to adapt to changing conditions and hazards.
- ▶ **Objective 4:** Restoration efforts will include participation in and encouragement of research that addresses climate resiliency as it relates to Alakoko and the ahupua'a system. It will also be based on collaboration between traditional ecological knowledge and modern science.

## Goal 8:

### Endangered Waterbirds and Other Native Species Are Protected

Protecting endangered waterbirds and other native species is a cornerstone of the Alakoko loko i'a restoration effort. This goal aligns with the USFWS Recovery Plan for endangered waterbirds, ensuring that the loko i'a and surrounding ecosystems provide resilient suitable habitat for species recovery. By integrating predator control (Goal 6), habitat restoration (Goal 4), and hydrological management (Goal 3), Mālama Hulē'ia will help stabilize and increase endangered waterbird populations while reducing threats to their health and survival.

The restored loko i'a will support essential habitat for key life stages and behaviors such as nesting, foraging, and resting. Environmental conditions will be actively managed to prevent botulism outbreaks, avian influenza, and other disease risks. Restoring the pond's hydrology, maintaining appropriate wetland and lo'i agricultural systems, and managing invasive plants will further support thriving native bird populations.



Regular monitoring of bird populations, including endangered Hawaiian waterbirds, is an important part of Mālama Hulē'ia's restoration efforts.

- ▶ **Objective 1:** The restored Alakoko loko i'a will support habitat to enable populations of endangered waterbirds to be sustained in numbers that are consistently stable or increasing throughout the property.
- ▶ **Objective 2:** Endangered waterbird mortality will be reduced through ongoing control of introduced predators (Goal 6) and the monitoring of hydrological conditions (Goal 3) to reduce botulism outbreaks.
- ▶ **Objective 3:** The restored Alakoko loko i'a will support wetlands and traditional Hawaiian lo'i agricultural systems (including wetland plants favorable to life cycle and behavioral needs) that are managed as habitat suitable for waterbirds, including the maintenance of appropriate hydrological conditions and control of invasive nonnative plants.
- ▶ **Objective 4:** Traditional ecological knowledge and modern conservation science will be integrated with the intent to improve nesting success and provide refuge from terrestrial predators, including the development of kīpuka (native habitat refuges or floating islands) or other protected nesting areas within the pond. These kīpuka serve multiple purposes: they create habitat for native birds, support water quality improvement by filtering nutrients, and offer space for growing traditional food crops—reviving cultural practices while enhancing ecological function.

## Goal 9:

### Management Goals at Hulē'ia National Wildlife Refuge Will Be Supported

Ongoing monitoring of waterbird populations will remain a shared priority for Mālama Hulē'ia and the USFWS. The presence and recovery of these endangered species serve as vital indicators of the ecosystem's overall health. The co-stewardship approach emphasizes mutual benefits and is reflected in the increased diversity and abundance of native species in the entire region.

Through ongoing consultation, adaptive management, and shared stewardship, Mālama Hulē'ia and the USFWS will continue to build a resilient and sustainable future for the Alakoko loko i'a, its surrounding habitats, and the Native Hawaiian community.

- ▶ **Objective 1:** Mālama Hulē'ia, a registered Native Hawaiian Organization (NHO), will consult with and represent the interests of the Native Hawaiian community within the ahupua'a.



'Alae 'ula (Hawaiian moorhen [gallinule])

- ▶ **Objective 2:** Mālama Hulē’ia will adhere to refuge requirements and support habitat for endangered species. Mālama Hulē’ia supports an ecosystem approach that integrates traditional Hawaiian practices with ecological management.
- ▶ **Objective 3:** Mālama Hulē’ia will provide educational programs that support the goals of the refuge.

## Concept to Action—Summary of Planning, Progress, and Recommendations Moving Forward

### Understanding the Restoration Needs of Alakoko Loko I’ā

Decades of mangrove growth along with its associated debris and sediment accumulation impaired all aspects of Alakoko loko i’ā. The pond itself was inaccessible due to the dense vegetation, which also choked out native vegetation and habitat for native and migratory waterbirds. The intense water usage of mangroves impacted pond hydrology, including water quality.

Restoration efforts at Alakoko loko i’ā began with the initial mangrove removal work between 2018 and 2021. Since then, Mālama Hulē’ia has been practicing adaptive management, including careful observation of changing conditions and testing restoration techniques using pilot projects.

Mangrove removal changed the water flow and salinity in the loko i’ā, altering the composition of fish populations as it improved habitat for native fish species. It also exposed remnants of an old Hawaiian freshwater system that carried water from the punawai through lo’i into the pond.

Careful observations of Alakoko following mangrove removal, coupled with research into the history, design, use, and functionality of Hawaiian fishponds, provided insight into the ways that freshwater most likely had been used to support the loko i’ā in the past. Mālama Hulē’ia also planted pilot māla (gardens) and lo’i systems to learn about water dynamics, and soil and growing conditions. The organization began surveying and monitoring bird and fish populations (Appendix 4), water quality and aquatic conditions, as well as the native and/or culturally significant plants that have sprouted from the seed bank. This process facilitated an understanding of the changing Alakoko ecosystem, as well as gathering information to guide future restoration efforts.

### Project Phases

Mālama Hulē’ia began restoration efforts at Alakoko loko i’ā prior to the initiation of conceptual planning in 2022. However, the current restoration projects as well as planned future projects all are consequent to the organization’s initial efforts to remove mangrove throughout the Hulē’ia River starting in 2015 and at Alakoko beginning in 2018.

The restoration of Alakoko loko i'a requires a phased approach in order to address the needs of the loko i'a system and to understand the impact of each restoration action. Kilo and adaptive management approaches are fundamental to Mālama Hulē'ia's restoration efforts (Figures 4-4 through 4-6).

Please see the list of [major grants and partnerships](#) for information on the entities that have financially supported and/or partnered with Mālama Hulē'ia on restoration projects at Alakoko loko i'a and in the Hulē'ia River 'aina kumu wai (watershed).

#### 2018–2021

The restoration of Alakoko loko i'a began with mangrove removal (Figure 4-4). Once Mālama Hulē'ia started to observe how Alakoko responded to mangrove removal, they initiated additional restoration efforts to restore the pond's hydrology and test how traditional Hawaiian agriculture systems would work at the site.

- ▶ Mangrove removal around circumference of Alakoko loko i'a, including the kuapā.
- ▶ Mangrove removal in downstream wetlands and wetlands restoration.
- ▶ Fish passage reconnection between Alakoko loko i'a and Hulē'ia River.
- ▶ Planting of pilot māla and lo'i systems.
- ▶ Testing electric and alternative fencing for predator control.

#### 2021–2026

The second phase of the Alakoko restoration continues actions related to the hydrology of the loko i'a, mangrove removal, and conceptual planning (Figure 4-5).

- ▶ Phase 2 mangrove removal (upstream wetlands and upstream along Hulē'ia River).
- ▶ Coastal wetlands restoration project.
- ▶ Removal of living mangrove wall along the kuapā.
- ▶ Continuation of fish passage projects.
- ▶ Sediment management and kuapā restoration.
- ▶ 'Auwai restoration.
- ▶ Punawai-related riparian restoration.
- ▶ Conceptual planning.

#### 2025+

The third phase of the Alakoko restoration will include the dryland and forested areas and efforts to keep nonnative predators like feral pigs out of the Alakoko property (Figure 4-6).

- ▶ Nahele reforestation and restoration.
- ▶ Ungulate exclusion.

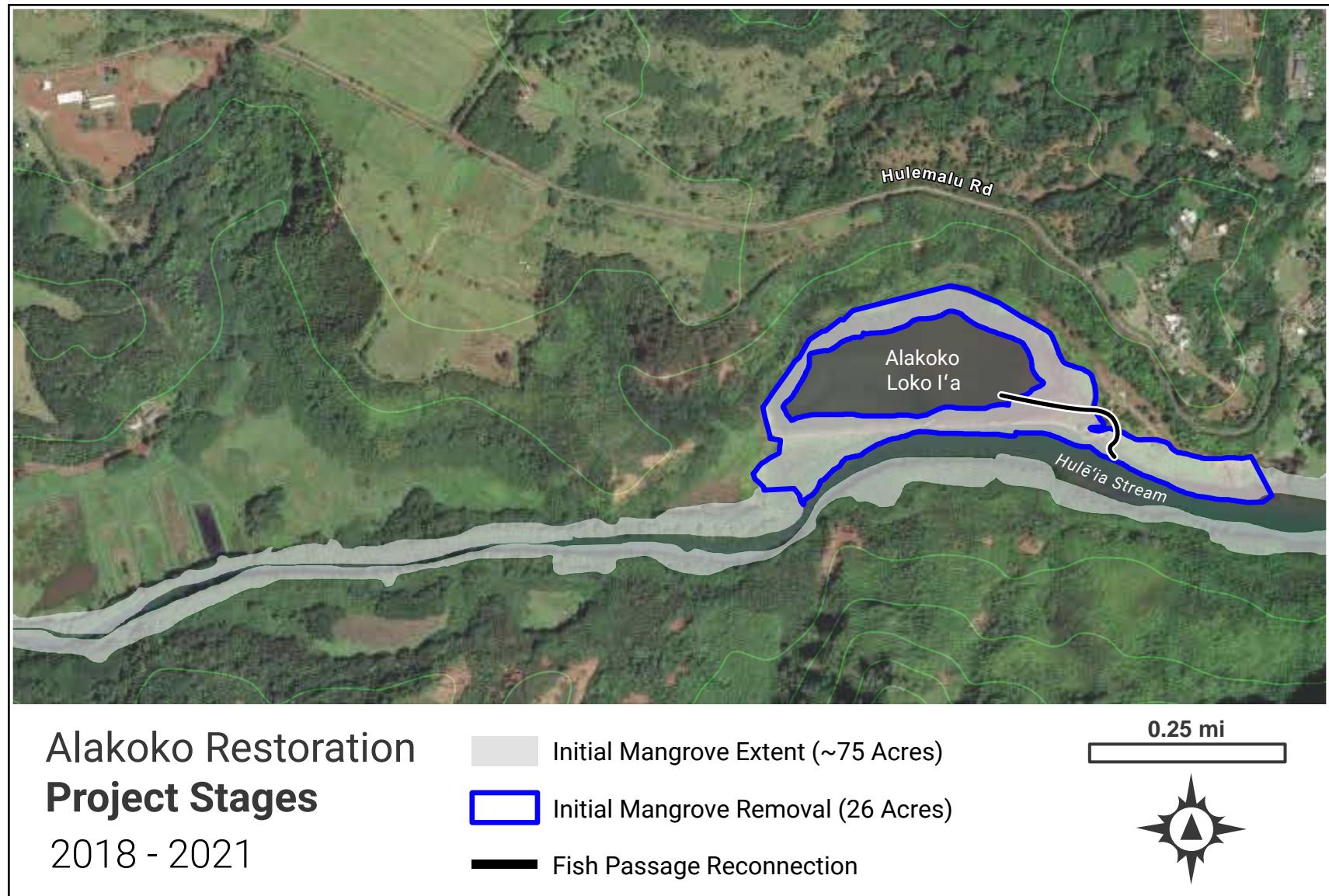



Figure 4-4. Mālama Hulē'ia's initial restoration work at Alakoko loko i'a took place between 2018 and 2021, and consisted of mangrove removal and the initial fish passage project.

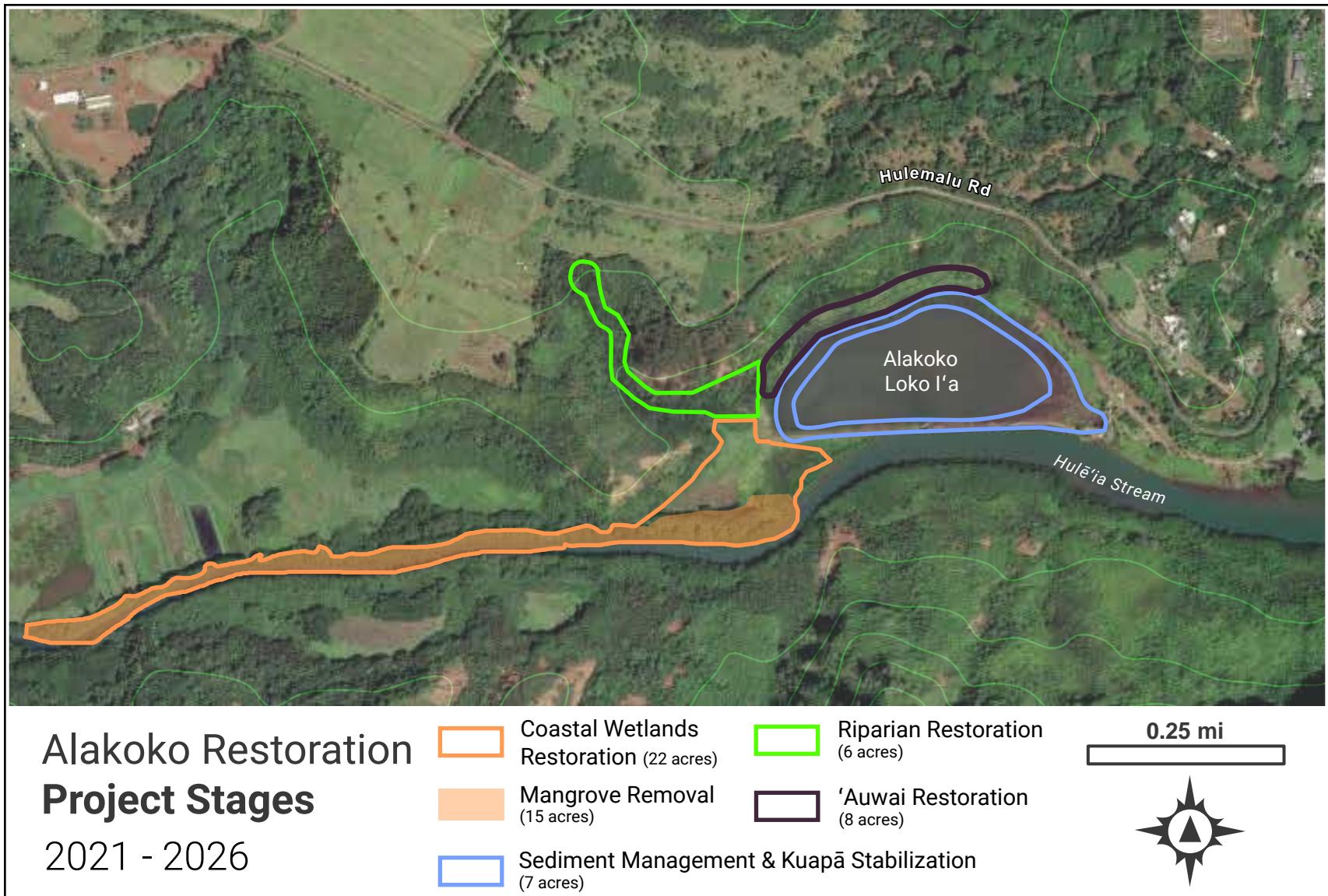



Figure 4-5. Between 2021 and 2025, Mālama Hulē’ia continued mangrove removal, as well as restored the loko i’ā by stabilizing the kuapā and dredging sediment. Riparian and ‘auwai restoration projects also occurred.

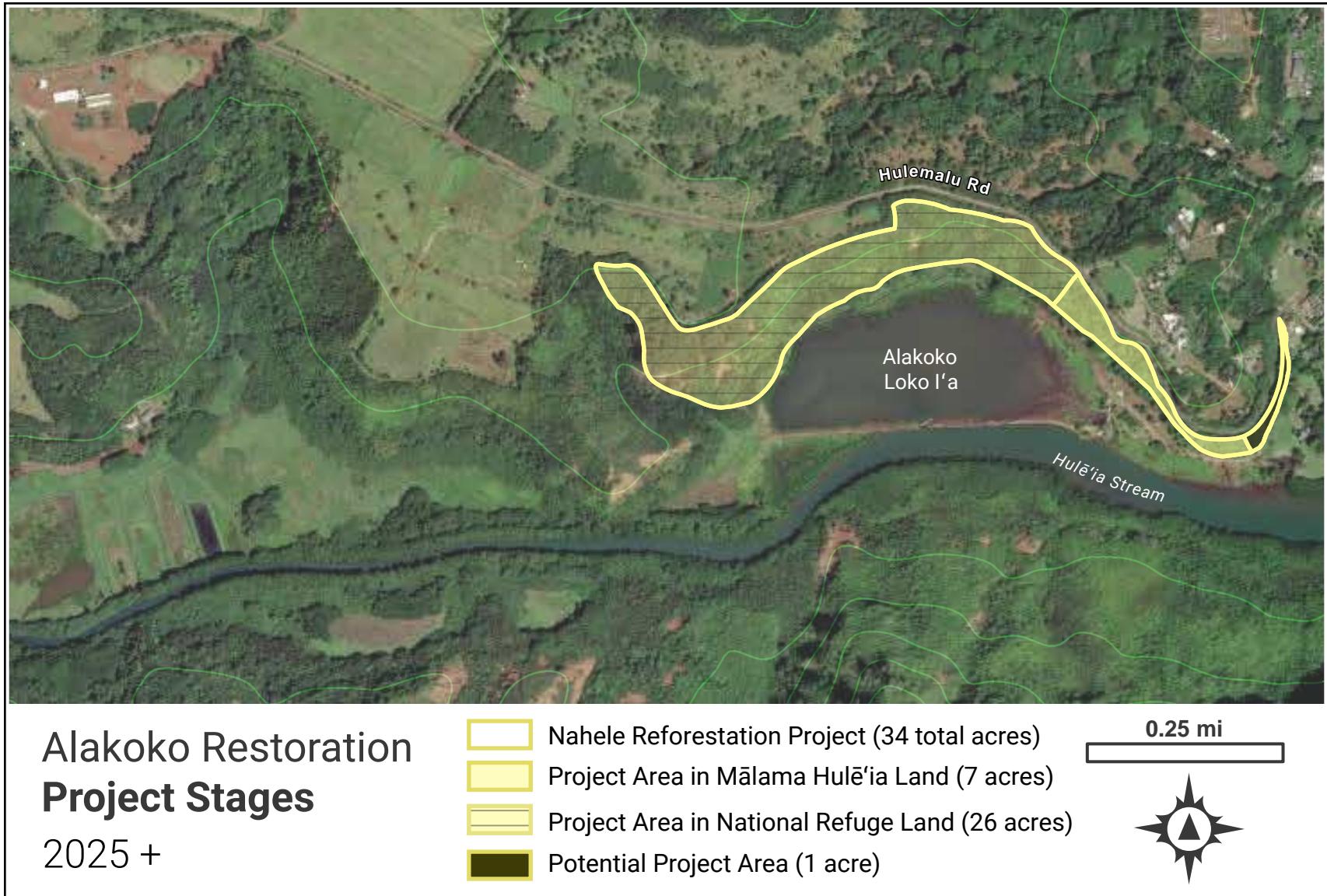



Figure 4-6. Between 2025 and 2025, Mālama Hulē'ia plans to restore the nahele surrounding the loko i'a.

### **Future Restoration Actions**

Additional restoration actions will be needed to fully reestablish Alakoko loko i'a as an aquacultural and agricultural system that supports both the environment and local community. These future actions depend on making adaptive decisions based on how the system has responded to previous actions, opportunities to collaborate with Hulē'ia NWR, and available funding. Potential actions include:

- ▶ Planting of *lo'i* kalo.
- ▶ Planting of *māla*.
- ▶ Habitat creation for waterbirds.
- ▶ Papākolea kahawai restoration.

## **Challenges and Opportunities with Hulē'ia NWR**

Undertaking a major restoration project like Mālama Hulē'ia has at Alakoko loko i'a requires consideration of systems and processes that operate on landscape scales as well as finding opportunities where a variety of entities can collaborate and work together to meet common goals and create outcomes that have broad benefits. Mālama Hulē'ia began working in Nāwiliwili Bay and the Hulē'ia River 'āina kumu wai to remove invasive red mangrove to restore native vegetation and natural ecosystems, including creation for endangered waterbirds. Since then, the organization has embarked on a more extensive restoration of Alakoko loko i'a.

The Alakoko system responded in remarkable ways to mangrove removal with growth of native plants, the reemergence of punawai and other wai systems, and expanded habitat for native birds and i'a, creating opportunities to heal the landscape beyond just invasive plant removal. Throughout this process, Mālama Hulē'ia has worked with a variety of federal, state, and local agencies, NHOs, other nonprofits, community groups, and local landowners.

Mālama Hulē'ia and Hulē'ia National Wildlife Refuge share a property boundary that cuts across parts of Alakoko loko i'a itself (Figure 1-2). Much of the larger Alakoko system extends up the hillslope above the pond on refuge land, and also includes the Hulē'ia River and adjacent wetlands. Papākolea kahawai, a freshwater stream that joins the Hulē'ia River in Hulē'ia NWR about 0.3 miles upstream of Alakoko, also has importance in the restoration of the loko i'a.

The realities of the Mālama Hulē'ia-USFWS property boundary as well as the overall context of Alakoko loko i'a as it relates to other nearby landowners and within the ahupua'a mean that collaboration and cooperation are required for the continuing restoration and stewardship of the loko i'a.

Mālama Hulē'ia and Hulē'ia National Wildlife Refuge also hold values in common related to land stewardship and the protection of native plants and animals.

While there are opportunities that arise from the need to work with other landowners and entities for the long-term stewardship of Alakoko loko i'a and



Lo'i kalo and pilot māla 'ai with Alakoko loko i'a in the background

the ahupua'a, challenges also exist. For example, the USFWS has strict regulatory mandates related to the protection of endangered species and other landowners may have their own sets of concerns. However, the existence of challenges in themselves provides further opportunities for their resolution and for collaboration and cooperation, which in turn may generate new solutions that address large-scale issues that benefit a wide array of stakeholders.

## Challenges

### The Need for Long-Term Management of Invasive Mangrove throughout the Hulē'ia Watershed

Although Mālama Hulē'ia has made considerable strides towards controlling red mangrove at Alakoko loko i'a and along the Hulē'ia River, the invasive qualities of this species mean that controlling it will require active management into foreseeable future. Because the plant primarily spreads by propagules that can float long distances, the control of red mangrove requires active management by multiple landowners. Furthermore, requirements of the National Coastal Wetland Conservation (NCWCG) Grants that funded much of Mālama Hulē'ia mangrove removal work include a minimum of 20 years of maintenance. Access to these areas is essential to meeting this grant requirement, requiring work on the refuge.

### **Regulatory and Permit Limitations for Mālama Hulē'ia's Restoration Work on USFWS Lands**

The mangrove removal work that Mālama Hulē'ia does in Hulē'ia NWR is currently conducted under the stipulations of the Special Use Permit (SUP). These permits grant access to the refuge for specific, time-limited actions, a restriction that creates constraints on the ability of an organization like Mālama Hulē'ia to nimbly respond to ecosystem needs based on current conditions such as new infestations of red mangrove. They also make continuous stewardship and long-term restoration more difficult.

### **Difficulty in Locating the Precise Property Boundary around Alakoko Loko I'a**

Difficulty in locating the exact property boundary between Mālama Hulē'ia's parcels and the Hulē'ia NWR has created confusion regarding land ownership of specific areas of the larger loko i'a system, and has complicated restoration, management, and maintenance efforts.

The property boundary also does not always follow logical lines. For example, it traverses the edge of the loko i'a itself, meaning that not all of the loko i'a is under Mālama Hulē'ia's ownership. Further, areas that are critical to the functioning of the larger loko i'a system including the locations of many punawai, much of the alawai, and wetlands are on USFWS property. Additionally, areas where lo'i kalo, lo'i i'a kalo, and māla will be recreated as well as much of the hillslope where nahele restoration needs to occur are also on USFWS lands.

### **Hulē'ia NWR Staff Do Not Have the Capacity to Actively Manage USFWS Lands Immediately Adjacent to Alakoko Loko I'a**

The USFWS focuses its management activities to benefit endangered Hawaiian waterbirds in the more central area of Hulē'ia NWR which provides the best and largest areas of available habitat for ae'o (Hawaiian stilt), 'alae 'ula (Hawaiian moorhen), 'alae ke'oke'o (Hawaiian coot), koloa maoli (Hawaiian duck), and nēnē (Hawaiian goose). As a result of the agency's limited capacity, it has not had the resources available to meet all the management needs of the refuge land immediately adjacent to Alakoko loko i'a.

### **Shared Access Road to Alakoko Loko I'a and Traffic Impacts on Private Homeowners**

The entrance road currently used by Mālama Hulē'ia to access Alakoko loko i'a passes through a neighborhood of private homeowners, creating traffic and safety concerns among its residents (Figure 4-7).

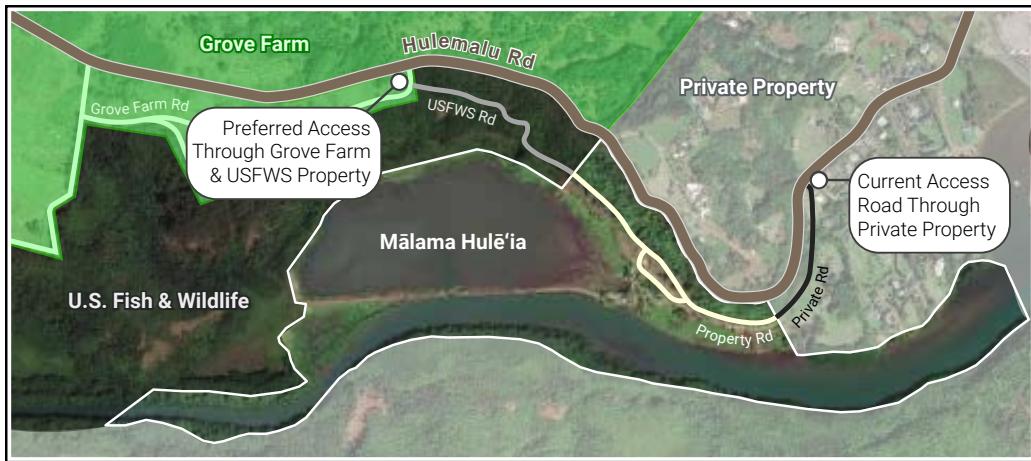



Figure 4-7. Map showing the preferred access to Alakoko loko i'a using a road through Grove Farm and USFWS property and the current access road through private property.

## Opportunities

### Development and Enhancement of Cooperative Agreements and Other Relationships with the USFWS on Collaborative Stewardship Goals

The property boundary between Mālama Hulē'ia and the Hulē'ia NWR, as well as shared stewardship goals and USFWS policy, offer important opportunities for collaboration between the two entities. Co-stewardship opportunities exist for Native Hawaiian Organizations to use biocultural approaches in the stewardship of Alakoko loko i'a and the refuge. See sidebar next page.

### Ecological Restoration as a Tool to Create Habitat for Endangered Waterbirds and Endemic Fish

The restoration of Alakoko loko i'a and adjacent wetlands as well as mangrove removal in the Hulē'ia River watershed offers important venues for the enhancement and expansion of suitable habitat for native i'a, birds, and plants.

### Integration of Traditional Agricultural in Restoration Actions

Lo'i kalo and māla systems as well as reestablishing traditional and medicinal plants in the nahele provide benefits to both the environment and the community. Lo'i kalo can provide important habitats that supports the life cycle of endangered waterbirds, and traditional foods and medicines help sustain the community.

### Adaptive Management Practices

The use of adaptive management principles as well the Hawaiian biocultural approaches, historical research, kilo, and data collection offers Mālama Hulē'ia the broadest suite of tools to successfully revitalize Alakoko loko i'a and improve the health of the ahupua'a.

## Proposal for Co-Stewardship and Co-Management between Mālama Hulē'ia and Hulē'ia NWR

In early 2023, Mālama Hulē'ia submitted a draft Memorandum of Understanding (MOU) to the USFWS to initiate the process of co-stewardship for the area surrounding Alakoko loko i'a. The authority for this proposal is based on USFWS Director's Order 227, Fulfilling the Trust Responsibility to Tribes and the Native Hawaiian Community, and Other Obligations to Alaska Native Corporations and Alaska Native Organizations, in the Stewardship of Federal Lands and Waters. This order states:

*The Service recognizes the need for strong, healthy communication and relationships with Tribal governments, ANCs [Alaska Native Corporations], ANOs [Alaska Native Organizations], and the Native Hawaiian Community so that we can work together in support of Tribal sovereignty, Tribal self-determination, and our shared goals. We recognize that the Service is entrusted with the management of lands that are the ancestral homelands of Tribes and the Native Hawaiian Community that predate the National Wildlife Refuge System. When the Service and Indigenous peoples work together on managing our lands and waters, along with the fish and wildlife that inhabit them, our long-standing relationships are strengthened, and resources are better protected. It likewise reaffirms the Service's government-to-sovereign relationship with the Native Hawaiian Community, acting through Native Hawaiian organizations, which furthers the United States' special political and trust relationship with the community.*

As a recognized Native Hawaiian Organization (NHO) under the Office of Native Hawaiian Relations (ONHR), and currently involved in active habitat restoration, Mālama Hulē'ia is in a unique situation to work cooperatively with USFWS to restore the lands surrounding the Alakoko loko i'a, including those that are within Hulē'ia NWR. Such an agreement would help both entities meet their management objectives, improve available habitat for native plants, i'a, and birds, provide further opportunities for community engagement, and use biocultural approaches to resource stewardship.

Another approach to co-stewardship includes the development of a Comprehensive Conservation Plan (CCP) for Hulē'ia NWR that integrates Native Hawaiian approaches to restoration and stewardship. CCPs are long-term management plans for wildlife refuges that are required by National Wildlife Refuge System Improvement Act of 1997. The development of a CCP for Hulē'ia NWR would be an opportunity for collaboration between the USFWS and Native Hawaiian practitioners and Mālama Hulē'ia, a NHO. This would facilitate Hulē'ia NWR working with Mālama Hulē'ia on the stewardship of refuge property adjacent to the loko i'a itself the restoration of the hillside above the loko i'a, research and restoration of punawai and

kahawai hydrology, and addressing the threats that endangered species face on lands managed by the two entities.

U.S. Department of the Interior Secretarial Order (S.O.) 3403 calls for federal land agencies to “promote the use of collaborative agreements and/or provisions in land management plans” in order to enhance co-stewardship of federal lands and waters, including wildlife and its habitat. The order also requires agencies to engage Tribes (including the Native Hawaiian Community) “in meaningful consultation at the earliest phases of planning and decision-making relating to the management of Federal lands to ensure that Tribes can shape the direction of management.” USFWS policy additionally states that tribal expertise and indigenous knowledge will be incorporated in agency planning processes and that tribal representatives will have opportunities to participate in the implementation of USFWS plans.

### **Community Engagement**

As a community-based 'āina nonprofit organization, Mālama Hulē'ia can assist with the Hulē'ia NWR's outreach efforts to the local community. In January 2025, the USFWS published the Final Compatibility Determination for Environmental Education and Interpretation for Hulē'ia NWR (USFWS 2025). This agreement allows Mālama Hulē'ia and refuge staff to work collaboratively on the environmental education, and allows Mālama Hulē'ia staff to provide this service for the refuge. It provides a legal mechanism for Mālama Hulē'ia to offer educational programs, community workdays, and opportunities to learn about Hawaiian cultural practices, ecological restoration, and endangered waterbirds on Alakoko and refuge land on behalf of the refuge.

### **Development of An Alternate Access to Alakoko Loko I'a to Alleviate Impacts to Private Landowners**

Obtaining a right-of-way (ROW) or other appropriate access agreement from the USFWS for Mālama Hulē'ia to use an existing roadway that crosses Hulē'ia NWR lands to access the Alakoko property would alleviate neighboring homeowners concerns about traffic impacts related to long-term restoration and management of Alakoko loko i'a. This would also assist with access for school and community groups, as well be advantageous for nahele restoration.

### **Boundary Adjustment to the Hulē'ia NWR**

A minor modification of the boundary of Hulē'ia NWR would alleviate many of the challenges that arise from the location of the existing boundary that cuts across the edge of the pond itself and places critical parts of the larger loko i'a system including punawai, alawai, and wetlands under USFWS ownership. Such a boundary adjustment would simplify the restoration of Alakoko loko i'a, yet still allow for collaboration between Mālama Hulē'ia and the USFWS on larger ecosystem restoration goals including ones for providing appropriate and safe habitats for endangered Hawaiian waterbirds.





## Chapter 5 Climate Change Adaptation

### Introduction

Alakoko loko i'a is located less than a mile upstream on the Hulē'ia River from Nāwiliwili Small Boat Harbor in Nāwiliwili Bay. It is tidally influenced and was damaged by the 1946 tsunami that impacted the Hawai'i Islands. Since Alakoko is at low elevation in the coastal environment, it is among the most vulnerable areas in the Hawaiian Islands in its exposure to impacts from climate change (Figure 5-1) (Keener et al. 2012).

Hawai'i is experiencing the impacts of climate change, including a warming air and surface sea temperatures, along with a decrease in trade winds and precipitation as well as changing rainfall patterns (University of Hawai'i Sea Grant College Program 2014). The base flow of streams has decreased and drought is expected to become more common.

Sea-level rise in Hawai'i has accelerated over the last century, causing coastal erosion, ecosystem damage, and damage to infrastructure in low-lying areas (University of Hawai'i Sea Grant College Program 2014). By 2100, cumulative sea level rise in Hawai'i is projected to be between 1.0 and 3.2 feet (0.3 to 1.0 m) (University of Hawai'i Sea Grant College Program 2014). A state-wide assessment of Hawai'i's vulnerability to sea level rise projects that Alakoko loko i'a and most of the surrounding area may be inundated with a 3.2 ft (1.0 m) (Figure 5-2) (Hawai'i Climate Change Mitigation and Adaptation Commission 2021). The projected 3.2-ft rise is based on the upper end of the "business as usual" sea level rise scenario in the International Panel on Climate Change (IPCC) Assessment Report 5 (Frazier et al. 2023).

Information from these models for sea level rise are incorporated in the planning of structures and infrastructure on the Mālama Hulē'ia property (Chapter 6). The

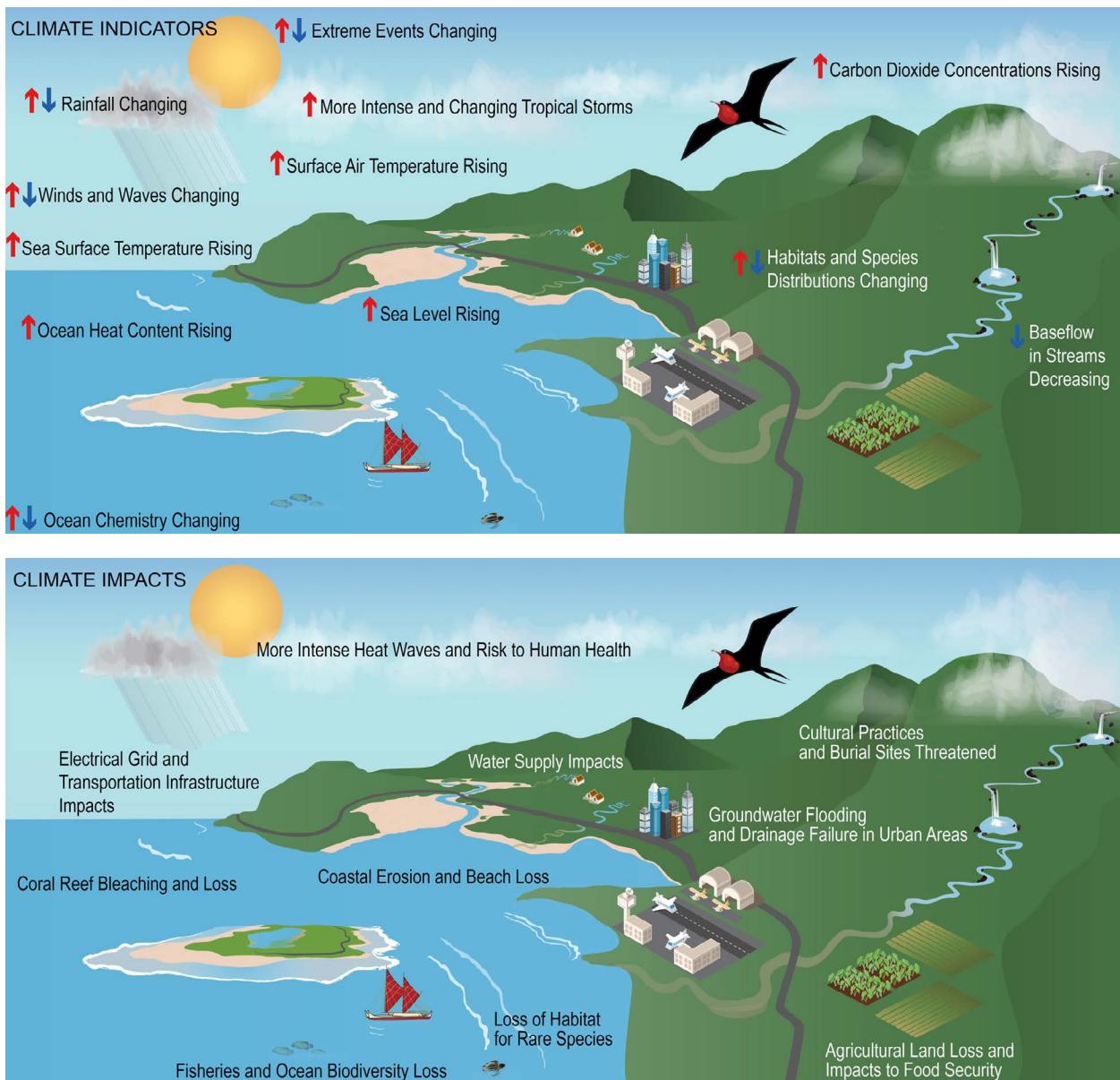
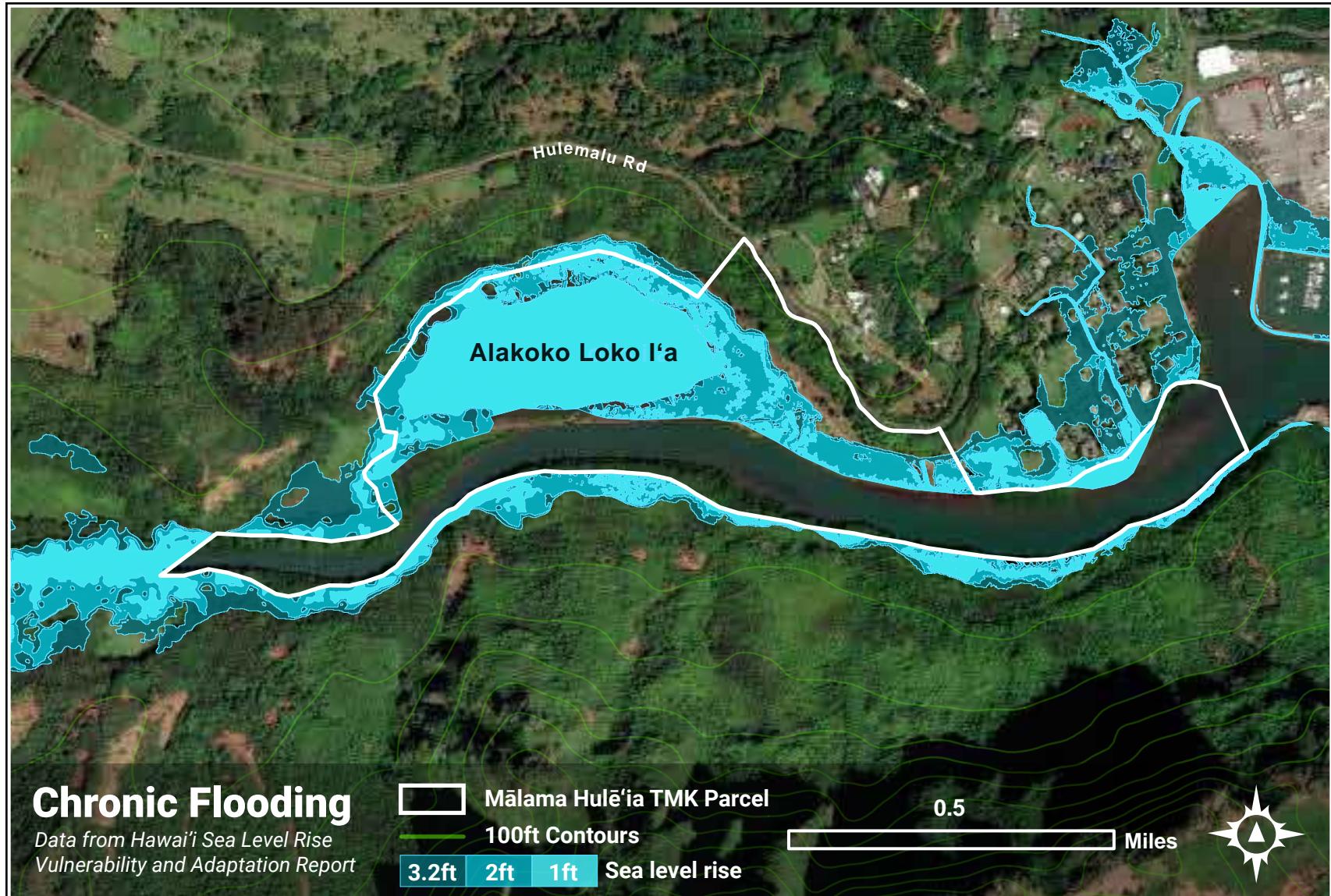


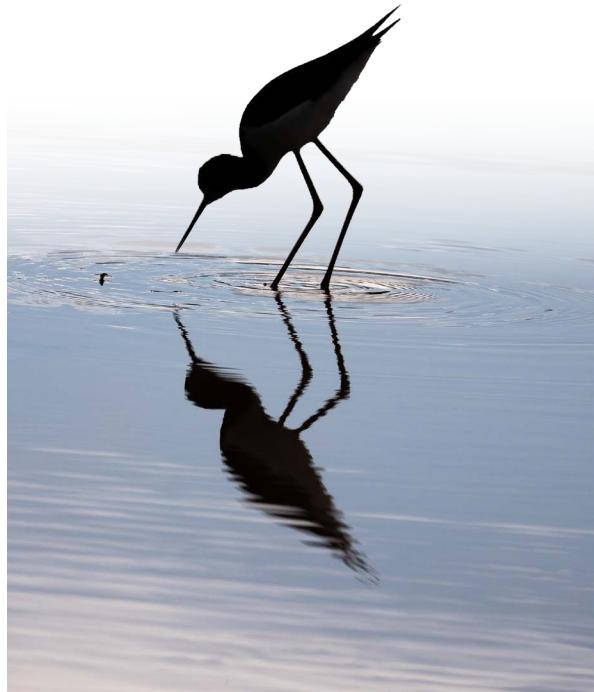

Figure 5-1. Top: Climate indicators for Hawai'i and the Pacific Islands region. Bottom: Climate impacts for Hawai'i and the Pacific Islands region. Graphics from Keener et al. 2012.

Alakoko restoration project will create a more resilient ecosystem, with adaptive management strategies in place to offer adaptation to address future impacts of climate change.

## Existing Climate Indicators, Impacts, and Resilience Opportunities

Many of the impacts of climate change in the Hawaiian Islands will affect Alakoko Loko i'a (Figure 5-1; Table 5-1). The five climate change indicators that will have the most profound impacts on the Alakoko system are:





Figure 5-2. Modeling includes three chronic flooding hazards: passive "bathtub" flooding, annual high wave flooding, and coastal erosion. The three hazards were then combined to define the projected extent of chronic flooding due to sea level rise, called the sea level rise exposure area (SLR-XA).

- ▶ Rising sea level;
- ▶ Reduced rainfall and increased drought;
- ▶ Increased surface and air temperatures;
- ▶ Extreme rainfall events;
- ▶ Increased risk of wildfire.

Rising sea level, along with reduced rainfall and increased drought, especially when combined with an increase in temperature, may produce significant changes in and impair the ecosystem of the loko i'a. Reduced streamflow during the dry season may disrupt habitat connectivity between the fishpond and Hulē'ia River, diminish the fishpond's conservation value, and complicate efforts to preserve its unique biodiversity (Clilverd et al. 2019). These conditions will create heightened risks for aquatic species due to greater vulnerability to diseases and an increase in invasive plants and aquatic organisms (Gagne and Blum 2016). Decreased stream flow, particularly when combined with sea level rise, increases the likelihood of saltwater intrusion, impacting the fresh and brackish water systems at Alakoko. Salt can be a significant contaminant where wave-driven overwash and sea level rise impact the freshwater transition zone (Post et al. 2018), posing critical challenges to the ecological integrity and water quality of Alakoko loko i'a. Flood events may impact both water quality and increase sedimentation in Alakoko loko i'a.

The change in frequency and intensity of wildfires in the Pacific Islands, which have been increasingly linked to El Niño events and climate change, may further exacerbate the ecological pressures on the fishpond (Trauernicht et al. 2015).

Because of the red mangrove infestation and the associated changes to its ecosystem, Alakoko loko i'a has been more likely to experience adverse impacts due to climate change. However, the mangrove removal projects followed by other restoration actions that Mālama Hulē'ia has undertaken at Alakoko loko i'a will help Alakoko adapt to future changes brought on by climate change. A healthy ecosystem is more resilient and can more likely recover from disturbance events such as droughts or intense storms. The use of traditional agriculture methods can also provide erosion control and help preserve water quality. Supporting and maintaining resilient ecosystems at places such as Alakoko loko i'a is an essential component of adapting to climate change (Frazier et al. 2023).



A'eo. USFWS photograph by Dan Zimmerman.

Table 5-1 Climate change impacts on Alakoko loko i'a, and ongoing and future adaptation strategies.

| Climate Indicator                      | Impact on Alakoko System                                                                                                                                                                                                                                                                                                                                                  | Adaptation Strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rising sea level                       | <ul style="list-style-type: none"> <li>▶ Increased inundation risk to terrestrial ecosystems.</li> <li>▶ Coastal erosion leading to the destruction of ecosystems.</li> <li>▶ More frequent and extensive coastal flooding.</li> <li>▶ Saltwater intrusion.</li> <li>▶ Damage to or loss of permanent structures.</li> </ul>                                              | <ul style="list-style-type: none"> <li>▶ Practicing adaptive management.</li> <li>▶ Regularly evaluating the status of sea level rise and updating planning documents.</li> <li>▶ Regular monitoring of water quality and salinity levels of the pond.</li> <li>▶ Reinforcing the loko i'a kuapā or raising it if necessary.</li> <li>▶ Strategically using plant and soil systems, permeable surfaces, and water management practices to absorb, store, and filter excess water.</li> <li>▶ Siting and designing permanent structures to avoid impacts from sea level rise.</li> </ul> |
| Reduced rainfall and increased drought | <ul style="list-style-type: none"> <li>▶ Reduced stream flow.</li> <li>▶ Decreased freshwater inflow to the loko i'a.</li> <li>▶ Salinity imbalances and reduced water quality.</li> <li>▶ Reduced growth of native species.</li> <li>▶ Spread of invasive plants.</li> <li>▶ Habitat fragmentation and altered food webs.</li> <li>▶ Increased wildfire risk.</li> </ul> | <ul style="list-style-type: none"> <li>▶ Practicing adaptive management.</li> <li>▶ Regular monitoring of water quality and water levels in the loko i'a, lo'i, and punawai.</li> <li>▶ Connecting punawai and kahawai to the loko i'a system.</li> <li>▶ Establishing riparian buffers and employing soil conservation measures (e.g., lo'i kalo).</li> <li>▶ Removing invasive species and planting native vegetation.</li> <li>▶ Planting culturally significant drought-resistant crop varieties in agricultural areas to reduce water use.</li> </ul>                              |
| Increased surface and air temperatures | <ul style="list-style-type: none"> <li>▶ Increased water temperatures in the loko i'a that stress native aquatic organisms.</li> <li>▶ Increased evaporation rates and reduction in stream flow.</li> <li>▶ Favorable conditions for invasive plants that affect native plant communities.</li> </ul>                                                                     | <ul style="list-style-type: none"> <li>▶ Practicing adaptive management.</li> <li>▶ Regular monitoring water temperature and quality, aquatic organisms, invasive plants, and native vegetation and waterbirds.</li> <li>▶ Planting cultural and native vegetation to provide shade to help regulate land and water temperature.</li> <li>▶ Creating diverse habitat structures within the loko i'a, including limu, to provide habitat and breeding areas for native aquatic organisms.</li> </ul>                                                                                     |

| Climate Indicator       | Impact on Alakoko System                                                                                                                                                                                                                                                                                                                                                                                                                                           | Adaptation Strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extreme rainfall events | <ul style="list-style-type: none"> <li>▶ Flooding.</li> <li>▶ Increased erosion and sedimentation.</li> <li>▶ Potential breaches in the kuapā due to high water flow.</li> <li>▶ Compromised water quality.</li> <li>▶ Spread of invasive species, including mangrove seedlings.</li> <li>▶ Damage and loss of vegetation, restored habitats, and ecosystems.</li> <li>▶ Damage to permanent structures.</li> <li>▶ Disruption of community engagement.</li> </ul> | <ul style="list-style-type: none"> <li>▶ Practicing adaptive management.</li> <li>▶ Regular monitoring of water levels, sedimentation rates, invasive plants, and vegetation.</li> <li>▶ Restoring wetland buffers, lo'i kalo, and lo'i i'a kalo around the loko i'a to address erosion and help absorb excess water during floods.</li> <li>▶ Restoring punawai-related riparian corridors on the hillside to address erosion and help absorb excess water during floods.</li> <li>▶ Creating small ridges and channels to guide water flow and allow infiltration.</li> <li>▶ Elevating fishpond walls as necessary.</li> <li>▶ Using permeable surfaces for pathways and parking lots.</li> <li>▶ Siting and designing permanent structures to avoid flood impacts.</li> <li>▶ Involving the community in Indigenous and sustainable land management practices.</li> </ul> |
| Wildfires               | <ul style="list-style-type: none"> <li>▶ Loss of cultural and native vegetation and biodiversity.</li> <li>▶ Disturbances that favor invasive plants.</li> <li>▶ Destruction of infrastructure.</li> <li>▶ Social, economic, and psychological impacts on the community.</li> <li>▶ Disruption of community engagement activities.</li> </ul>                                                                                                                      | <ul style="list-style-type: none"> <li>▶ Developing a fire safety plan.</li> <li>▶ Implementing nahele restoration to remove invasive plants and replant with native and culturally significant plants to reduce fuels.</li> <li>▶ Creating and maintaining firebreaks.</li> <li>▶ Implementing appropriate setbacks between buildings and adding sprinkler systems where practicable and required by law.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## Resilience Through Alakoko Restoration: Enhancing Ecosystem and Community Well-being

Ongoing and future restoration efforts at Alakoko will be pivotal in building the resilience of the ecosystem and the surrounding communities. By engaging in a holistic biocultural restoration strategy that uses ecosystem-based adaptation, the Alakoko restoration project (see Chapter 4) addresses the immediate impacts of climate change and strengthens the socio-ecological fabric against future threats.

Ongoing and proposed ecosystem-based adaptation interventions at Alakoko include (Table 5-2):

- ▶ Invasive plant removal;
- ▶ Revegetation with native and culturally significant plants;
- ▶ Restoration of traditional kalo (taro) agricultural systems;
- ▶ Kuapā (wall) restoration;
- ▶ Restoration of hydrological connectivity to support fishpond functionality, native fish, wetlands, and traditional Hawaiian agriculture;
- ▶ Restoration of uplands with native and Hawaiian plants includes restoring punawai (freshwater spring)-related riparian zones;
- ▶ Involvement of the community in restoration efforts through volunteer and environmental education opportunities;
- ▶ Collaborative management with adjacent landowners.

### Ecosystem-Based Adaptation

Ecosystem-based adaptation (EbA) is a subset of nature-based solutions (NbS) and is an approach informed by Indigenous knowledge to reduce negative impacts of climate change. The Convention on Biological Diversity defines ecosystem-based adaptation as using biodiversity and ecosystem services to help people adapt to the adverse effects of climate change (SCBD 2009). Ecosystem-based adaptation may include sustainable management, conservation, and restoration. It can be a part of an overall adaptation strategy that also considers the multiple social, economic and cultural co-benefits for local communities as well as contributes to the conservation of biodiversity (SCBD 2009).

Mālama Hulē'ia is dedicated to rejuvenating the 'āina (that which feeds), restoring Alakoko loko i'a to a state of abundance with functioning and thriving ecosystems. These actions should benefit native plants, native wildlife including endangered waterbirds, and native fish.

Ecosystem-based adaptation also enhances resilience of communities including food security, equity, justice and community engagement, and the conservation of cultural and natural heritage.

Table 5-2: Climate-resilience actions and outcomes

| Action                                                     | Outcome                                                                                                                                                                                                  | Contribution to Resilience                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Invasive Plant Removal                                     | <ul style="list-style-type: none"> <li>▶ Reduction of areas with invasive plant infestations.</li> <li>▶ Expansion of areas with native vegetation.</li> </ul>                                           | <ul style="list-style-type: none"> <li>▶ Enhances native biodiversity.</li> <li>▶ Strengthens ecosystem health and stability.</li> <li>▶ Provides habitat for endangered waterbirds.</li> <li>▶ Restores natural ecosystem functions and processes, including water filtration, pollination, and soil stabilization.</li> <li>▶ Mitigates wildfire risk.</li> </ul>                                                                                                                                                              |
| Revegetation with native and culturally significant plants | <ul style="list-style-type: none"> <li>▶ Expansion of areas with native vegetation.</li> <li>▶ Rejuvenation of native plant seed bank.</li> <li>▶ Habitat for native waterbirds.</li> </ul>              | <ul style="list-style-type: none"> <li>▶ Enhances native biodiversity and available habitats.</li> <li>▶ Strengthens ecosystem health and stability.</li> <li>▶ Improves landscape integrity.</li> <li>▶ Increases the landscape's ability to respond to disturbance events, including floods.</li> <li>▶ Mitigates wildfire risk.</li> <li>▶ Facilitates the reestablishment of traditional ecological knowledge practices.</li> <li>▶ Strengthens connections between communities and ancestral lands.</li> </ul>              |
| Restoration of traditional kalo agricultural systems       | <ul style="list-style-type: none"> <li>▶ Functioning lo'i systems.</li> <li>▶ Healthier aquatic ecosystems.</li> <li>▶ Habitat for native waterbirds.</li> <li>▶ Local/cultural food sources.</li> </ul> | <ul style="list-style-type: none"> <li>▶ Supports biodiversity and enhances ecosystem health.</li> <li>▶ Supports the aquatic food web and fisheries.</li> <li>▶ Provides habitat for endangered waterbirds.</li> <li>▶ Assists with flood control and hillslope stability.</li> <li>▶ Facilitates the reestablishment of traditional knowledge practices related to the cultivation and use of plants for food.</li> <li>▶ Enhances food sovereignty and security and provides a culturally significant food source.</li> </ul> |
| Uplands restoration                                        | <ul style="list-style-type: none"> <li>▶ Expansion of areas with native vegetation.</li> <li>▶ Functional punawai systems.</li> </ul>                                                                    | <ul style="list-style-type: none"> <li>▶ Enhances native biodiversity and available habitats.</li> <li>▶ Strengthens ecosystem health and stability.</li> <li>▶ Improves landscape integrity.</li> <li>▶ Restores natural ecosystem functions and processes.</li> <li>▶ Increases the landscape's ability to respond to disturbance events, including floods</li> <li>▶ Mitigates wildfire risk.</li> </ul>                                                                                                                      |

| Action                                                             | Outcome                                                                                                                                                                             | Contribution to Resilience                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kuapā restoration                                                  | <ul style="list-style-type: none"> <li>▶ Preserved integrity of the kuapā.</li> <li>▶ Improved functionality of the loko i'a.</li> <li>▶ Improved water quality.</li> </ul>         | <ul style="list-style-type: none"> <li>▶ Strengthens the loko i'a's ability to withstand flooding and storm surges.</li> <li>▶ Enhances native biodiversity and available habitats.</li> <li>▶ Strengthens aquatic ecosystem health and stability.</li> <li>▶ Supports sustainable fisheries and local food production.</li> <li>▶ Facilitates the reestablishment of traditional knowledge practices.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              |
| Restoration of hydrologic connectivity throughout Alakoko's system | <ul style="list-style-type: none"> <li>▶ Restored punawai and associated riparian systems.</li> <li>▶ Restored water flow from Papakolea Stream into the Alakoko system.</li> </ul> | <ul style="list-style-type: none"> <li>▶ Enhances native biodiversity and available habitats.</li> <li>▶ Strengthens aquatic ecosystem health and stability.</li> <li>▶ Strengthens ecosystem health and stability.</li> <li>▶ Improves landscape integrity.</li> <li>▶ Restores natural ecosystem functions and processes.</li> <li>▶ Supports wetlands.</li> <li>▶ Provides habitat for endangered waterbirds.</li> <li>▶ Supports native fish and sustainable fisheries.</li> <li>▶ Facilitates the reestablishment of traditional knowledge practices related to the cultivation and use of plants for food.</li> </ul>                                                                                                                                                                    |
| Community engagement                                               | <ul style="list-style-type: none"> <li>▶ Strong community ties and relationships.</li> <li>▶ Community understanding of biocultural practices and kuleana.</li> </ul>               | <ul style="list-style-type: none"> <li>▶ Enhances community awareness about local environmental challenges.</li> <li>▶ Leads to informed and proactive conservation efforts and adaptations to environmental changes.</li> <li>▶ Helps enable local communities to respond quickly to environmental threats or changes.</li> <li>▶ Strengthens Hawaiians' sense of place and feelings of ownership towards Alakoko loko i'a.</li> <li>▶ Builds social cohesion, collaboration, and unity.</li> <li>▶ Facilitates the intergenerational transfer of Indigenous knowledge about local conditions.</li> <li>▶ Reaches youth and students through educational outreach.</li> <li>▶ Creates kuleana and reciprocal relations, allowing sustainable stewardship that crosses generations.</li> </ul> |

| Action                   | Outcome                                                      | Contribution to Resilience                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Collaborative management | ► Restoration and ecosystem management on a landscape scale. | <ul style="list-style-type: none"><li>► Addresses ecosystem needs that extend beyond individual property boundaries.</li><li>► Preserves habitat connectivity, ecosystem integrity, and genetic diversity.</li><li>► Enhances the effectiveness of conservation efforts through coordination among multiple stakeholders.</li><li>► Provides opportunities to seek larger funding sources and share financial resources.</li><li>► Provides for economies of scale and makes ambitious projects more feasible and sustainable.</li><li>► Contributes to a unified voice advocating for policy and regulatory support for restoration efforts and enhances stakeholders' influence in policy making.</li></ul> |

## Strategies to Support and Sustain Ecosystem-based Adaptation to Deliver Broad Resilience Benefits

Using ecosystem-based adaptation approaches will help Mālama Hulē'ia deliver broad-based resilience benefits to Alakoko loko i'a, the Hulē'ia River watershed, and local and Indigenous populations. Mālama Hulē'ia will use the following strategies:

1. Implement ecosystem-based adaptation (nature-based) approaches that complement other approaches. A combined strategy can offer more comprehensive protection. For example, native plant restoration, a type of ecosystem-based adaptation, can reduce erosion and sedimentation, while adjacent fishpond walls provide a physical barrier to storm surges. This integrated approach ensures that ecological and structural defenses work together, providing immediate and long-term resilience benefits.
2. Incorporate climate-smart agricultural practices in areas adjacent to restoration sites to enhance carbon sequestration and effective water management so that agricultural lands can serve as buffers and corridors for biodiversity and complement restoration efforts within the loko i'a itself.
3. Work collaboratively with neighboring and adjacent landowners (governmental and private) on climate resilience and natural resource management. Ecosystem-based adaptation initiatives are often at a landscape-scale that transcends individual property boundaries. Developing joint management plans can address shared challenges and opportunities.
4. Seek out in joint funding opportunities for conservation and restoration projects that can access larger funding pools.
5. Support the adoption of local and national policies that improve climate resilience through ecosystem-based adaptation.
6. Advocate for policies that recognize and support nature-based solutions for climate resilience. Such policy solutions include incentives for the restoration and conservation of natural habitats, promotion of sustainable land use practices, and facilitation of collaborations to enhance ecosystem services. Share and exchange knowledge with similar projects locally and internationally.
7. Conduct vulnerability assessments to ensure targeted and effective implementation of ecosystem-based adaptation strategies so that measures remain responsive to changing conditions.





## Chapter 6 Kuhikuhi Pu'uone (Architecture or Site Development)

### Introduction

This conceptual plan for Kuhikuhi Pu'uone (Architecture or Site Development) at Alakoko loko i'a was developed with Mālama Hulē'ia board and staff. It reflects their collective vision for the facilities and infrastructure necessary to support the restoration, stewardship, and maintenance of Alakoko loko i'a. Restoration actions are anticipated to continue through 2030, with adaptive management and biocultural learning steering the process. Thereafter, stewardship of the restored areas will be an ongoing effort to ensure the loko i'a and the surrounding ecosystem continue to thrive and support native and endemic species.

This site plan supports the restoration and continued stewardship of Alakoko loko i'a. The purpose of the hale (buildings) and other structures included herein is to provide Mālama Hulē'ia with the infrastructure necessary to fulfill their mission of restoration, stewardship, cultural practice, and educational and cultural programming that sustains the community. This Kuhikuhi Pu'uone plan is a part of a larger conceptual master plan for Alakoko loko i'a that includes the restoration component.

Alakoko loko i'a is an approximately 600-year-old traditional Hawaiian fishpond located on the Hulē'ia River a short distance upstream from Nāwiliwili Bay. It is one of the most significant loko i'a in Kaua'i and is listed on the National and Hawai'i Registers of Historic Places. A loko i'a is a unique aquaculture system that optimizes natural patterns of an ahupua'a (traditional watershed-based land division). During the 20th century, Alakoko became overrun by invasive red mangrove (*Rhizophora mangle*), leading to significant damage to its kuapā (wall) and fundamentally changing its size, hydrology, and ecology. Mālama Hulē'ia has been working to restore Alakoko loko i'a since 2018.

In 2021, Mālama Hulē'ia was able to purchase the Alakoko property with support from the Trust for Public Land. This gave the nonprofit the opportunity to undertake a comprehensive restoration project and planning process that would restore functionality to Alakoko loko i'a as well as provide Mālama Hulē'ia with the kuhikuhi pu'uone necessary to do so.

## Planning Process

The board and staff of Mālama Hulē'ia have been working to restore Alakoko and revitalize the entire 'āina kumu wai (watershed) Hulē'ia for years. In 2022 Mālama Hulē'ia applied for technical planning assistance on a conceptual master plan for Alakoko from the National Park Service Rivers, Trails, and Conservation Assistance (NPS-RTCA) Program. With staff and board leadership and community input, Mālama Hulē'ia began charting a path forward together to honor and steward this place for generations to come.

The planning process for the loko i'a restoration was led by Peleke Flores, Mālama Hulē'ia's Director of 'Āina & Community Engagement. NPS-RTCA conducted a series of interviews with Peleke to develop the descriptions of the different components of the loko i'a restoration, the phasing, and guidance for the overall vision for the restoration of the loko i'a. Adaptive management principles including using observations and monitoring of previous restoration actions is an integral aspect of this plan. It will also help Mālama Hulē'ia to develop best practices and position them for effective long-term stewardship of Alakoko loko i'a.



Charrette participants then formed teams and developed on-site concepts for Alakoko Loko i'a under the guidance of the ASLA volunteer landscape architect. NPS Photo/Z. Babb.

Once the conceptual restoration graphics and goals and objectives were developed, NPS-RTCA worked with Mālama Hulē'ia to assess their infrastructure needs in support of the restoration and management of the loko i'a, as well as to provide the education programming and community involvement. This second part of the planning process led to the Kuhikuhi Pu'uone.

A design charrette for the Kuhikuhi Pu'uone was held on July 1–2, 2023. The charrette was led by Melisa Babb, a landscape architect volunteering through the partnership NPS-RTCA has with the American Society of Landscape Architects. Mālama Hulē'ia board and staff attended the charrette, with NPS-RTCA staff providing support.

Charrette participants broke into groups to each develop a vision for Alakoko, which were shared for the consideration of the broader group. The entire group then explored all the different ideas and approaches for the future of Alakoko.

One key idea that came up within each group independently was the potential value in acquiring land mauka (towards the mountain) of the loko i'a that is currently owned by Grove Farm. The rationale was that some aspects of operating the loko i'a should be kept as far from the pond itself as possible. An upland parcel would be the ideal place to store equipment, visitor parking, a secured entry point, and some administrative functions. However, it was decided that the planning process would continue under the assumption that acquiring upland property was not feasible, but that, if possible in the future, it should become a high priority.

After the July charrette, the planning team worked with staff to refine the work of the charrette participants and produced a range of four concepts, one from each of the charrette groups, plus one that was drafted by Peleke Flores, who wasn't able to attend the July session. The planning team returned to Alakoko in September 2023 with the draft concepts and shared them with the board and staff. The outcome of these work sessions was a single concept that everyone felt best met the needs of the loko i'a and was the best way forward.

After synthesizing the feedback from the board and staff at the September work sessions, the planning team refined the concept adding some mapping of potential hazards, and then returned in February 2024 for a series of meetings with stakeholders, neighbors, and members of the general public who were attending a volunteer day and a dry-stone wall-building course at the loko i'a. The feedback received during these sessions led to further refinement and some additional new ideas.

## Existing Conditions

Alakoko loko i'a is located on private land owned and managed by Mālama Hulē'ia. Alakoko loko i'a is a kuapā (wall)-style loko i'a that sits in a geomorphic bend in the Hulē'ia River. The kuapā, an ancient Hawaiian stone-faced dirt wall with a length of more than 2,700-feet-long, separates the loko i'a from the Hulē'ia River. Alakoko is tidally influenced and has brackish water due to water inputs from punawai (freshwater springs) and the estuarine environment.

Invasions of red mangrove since the middle of the 20th century impaired all aspects of Alakoko loko i'a, rendering the pond itself nearly inaccessible due to the dense vegetation and damaging the kuapā. The red mangrove also choked out native vegetation and habitat for endangered Hawaiian waterbirds, and adversely impacted pond hydrology, including water quality.

Between 2018 and 2021, Mālama Hulē'ia removed 26 acres of red mangrove around the pond's circumference, exposing the kuapā, several punawai, and components of an ancient aquacultural system. Since purchasing the property in 2021, the organization has embarked on a comprehensive restoration of the loko i'a and the surrounding area. Wetlands next to the Hulē'ia river have been restored with native vegetation. A fish passageway project was completed to connect the loko i'a to the river at low tide, and a sediment removal project to restore pond depths is underway. Work to repair kuapā is also in progress and the remnant live mangrove wall which is stabilizing the kuapā will be removed when that project is complete. Mālama Hulē'ia has also planted pilot lo'i kalo (taro patches) and māla (gardens), and has piloted nahele (forest) restoration.

Mangrove removal created a large open area on the east side of Alakoko loko i'a that Mālama Hulē'ia is using to base its operations (Figure 6-1 and Figure 6-2). Its headquarters are located in that area, and restoration activities are staged from there. On-site educational programming and community events also occur in that area as the grassy lawn is a central place for people to gather.

The ahu (Hawaiian altar or shrine) is the center of the site. Mālama Hulē'ia constructed the ahu prior to initiating the restoration work at Alakoko. The ahu serves as the piko (navel, or where life begins) that grounds people to place and



Figure 6-1. An overview of the open area that will be developed into the Kuhikuhi Pu'uone. The star shows the location of one of the mākāhā (saltwater inlet/outlet).



Figure 6-2. Existing conditions in the area that will be developed into the Kuhikuhi Pu'uone.

serves as a gathering place to welcome and orient people to Alakoko loko i'a. Hawaiian protocol is used whereby visitors ask permission to enter and they are greeted by staff and are taught the protocol used at the ahu. Participants are asked to introduce themselves, where they are from/where is their home, and to bring an ancestor or important person with them as they work at Alakoko.

The area contains a number of temporary structures. One of the most significant is an open-air tent (Figure 6-3). The tent is approximately 30 ft x 60 ft and serves as a classroom and meeting space. Hundreds of people per week may sit and learn together out of the sun and rain. The tent has a metal frame with tarp-like material serving as the roof. It is prone to damage in high wind and rain events.

Near the tent are a plant nursery and a shower building (Figure 6-4). Storage for supplies and equipment is done using a collection of shipping containers and sheds. There are two port-a-potties next to the storage containers. Parking for motor vehicles is informal with some general areas used more often than others.

Mālama Hulē'ia recently received two "tiny houses," donated by Kaua'i residents. One of these tiny houses currently serves as the nonprofit's office. The other is used for storage, but may possibly be converted to housing.

The only permanent existing structure on the Alakoko property was a dilapidated hale near the Hulē'ia River that was of marginal use and was destroyed in a windstorm in 2025 and two small structures, one used as a shower house and the other for storage.

Current access is primarily via a narrow dirt road to the east of the site. The road has an easement, but neighbors have expressed concerns about the volume of traffic now that activity at the loko i'a has increased. The neighbors are also concerned with safety in the area, especially with school groups utilizing the shared driveway. There is currently secondary access to the loko i'a on an old hauling road that crosses US Fish and Wildlife Service (USFWS) and Grove Farm property that enters from the north. Use of this route is preferred and requires a permit from USFWS and permission from Grove Farm.

## Development Considerations

Mālama Hulē'ia and the NPS-RTCA planning team adhered to stipulations in the property deed for the Alakoko property as well as regulations outlined in the State Land Use Conservation District and the Kaua'i Sea Level Rise Constraint District as sideboards throughout the planning process for the Kuhikuhi Pu'uone.

### Deed Restrictions

Through the acquisition process with the Trust for Public Land, the deed for the land containing Alakoko loko i'a includes restrictions that were put into place to ensure the property will be used in perpetuity for Native Hawaiian 'āina-based stewardship.



Figure 6-3. The tent is a central space at Alakoko. It is where the staff and board meet, where much of the education programming occurs, and is where people gather to eat.



Figure 6-4. Behind the tent, towards the river, is a space used as a plant nursery. Propagating native and canoe plant species is a fundamental part of the restoration and operation of Alakoko.

The property deed includes the following components:

- ▶ 1. Native Hawaiian 'āina (land)-based education, natural resource management, and stewardship grounded in Native Hawaiian culture and values;
- ▶ 2. Perpetuation of traditional and customary Native Hawaiian cultural practices, including but not limited to growing culturally important species;
- ▶ 3. Preservation and restoration of historic and culturally important land and sites, including but not limited to: Alakoko Fishpond system;
- ▶ 4. Preservation and restoration of significant native habitats or ecosystems, including but not limited to: Hulēia River, estuary, wetland, pond, springs, coastal areas, and forests;
- ▶ 5. Preservation and restoration of land and water used for sustainable aquaculture and agriculture to increase local food self-sufficiency;
- ▶ 6. Preservation and restoration of Niumalu watershed lands for water quality and quantity;
- ▶ 7. Preservation and restoration of land to reduce erosion, floods, landslides and runoff;
- ▶ 8. Providing pono (moral, ethical, proper), responsible, reciprocal, managed, safe, guided public access to the Property that ensures its cultural and natural resources are protected;
- ▶ 9. Conserving land for open space and scenic values; and
- ▶ 10. Development on the Property shall be limited to buildings, structures, roads, pathways, or other improvements (collectively, "Improvements"): that preserve a sense of place on the Property; that comply with all governmental laws and regulations; and that further and/or are accessory to any of the aforementioned purposes. Such Improvements may include, but are not limited to: one building used for office, community and/or educational purposes; greenhouses; agricultural structures; warehouses or storage buildings; bathroom buildings; one building used as a commercial kitchen and/or for the processing and/or packaging of agricultural and aquaculture products; one single family dwelling unit with a footprint not to exceed 3,000 square feet for occupancy by a caretaker of the Property; and one boarding house or dormitory for stewardship staff or students working on the Property. Hotel and/or transient vacation rental uses and structures shall not be allowed on the Property.
- ▶ 11. Except as otherwise provided herein, the amount of land coverage created on the Property shall not exceed five percent (5%) of the Property area. "Land Coverage" means a man-made structure, improvement or covering that prevents normal precipitation from directly reaching the surface of the land underlying the structure, improvement or covering. Structures, improvements and covering include roofs, surfaces that are paved with asphalt, stone, or the like such as roads, streets, sidewalks, driveways, parking lots, patios, and lands so used that the soil will be compacted so as to prevent substantial infiltration, such as parking of cars and heavy and repeated pedestrian traffic. Land coverage shall not include traditional Native

Hawaiian buildings, structures, or architecture, including but not limited to, hale hālāwai (meeting house), hale wa'a (canoe house), hale kia'i (guard or caretaker house), kuapā (fishpond walls), mākāhā (saltwater inlet/outlet) and ahu (altars).

## State Land Use Conservation District

The Alakoko property is located within the State of Hawaii Conservation District (Act 187, State Land Use Law of 1961; Title 13, Chapter 5, Hawai'i Administrative Rules; Chapter 183C, Hawai'i Revised Statutes). Act 187 created Conservation Districts to protect watersheds and water supplies; scenic areas; park lands, wilderness and beach reserves; and endemic plants, fish and wildlife. The Department of Land and Natural Resources, Office of Conservation and Coastal Lands (OCCL) is responsible for management of coastal resources including, but not limited to State Conservation District lands and the Ho'āla Loko i'a streamlined permitting process for the restoration and maintenance of traditional loko i'a systems.

The Conservation District is divided into five subzones that provide different levels of protection and resource use:

- ▶ Protective (most sensitive);
- ▶ Limited;



An example of a hale hālāwai. Source: APPENDIX X Hawai'i Provisions For Indigenous Hawaiian Architecture Structures section of Chapter 12 of the Kaua'i county Building code, the traditional A-frame style.

- ▶ Resource;
- ▶ General (least sensitive);
- ▶ Special.

The Alakoko property falls within three subzones: Protective, Resource, and Limited. An area near the west side of the loko i'a is in the Protective subzone, and most of the loko i'a itself is in the Limited subzone. The eastern portion of the property is in the Resource subzone. All of the infrastructure in the Kuhikuhi Pu'uone that facilitates the restoration and stewardship of Alakoko loko i'a, as well as Mālama Hulē'i'a's educational and community programming is planned for the Resource and Limited subzones. The placement of structures in the Kuhikuhi Pu'uone reflects what is permitted.

Some key regulatory excerpts regarding the Limited subzone as it applies to Alakoko loko i'a (Title 13, Chapter 5, Hawai'i Administrative Rules):

In addition to the land uses identified in this section, all identified land uses and their associated permit or site plan approval requirements listed for the Protective subzone also apply to the Limited subzone, unless otherwise noted.

If a proposed use is not presented below or in section 13-5-22, an applicant may request a temporary variance, petition the land use commission for a land use district boundary change, or initiate an administrative rule change to have the proposed use added to the identified land uses.

Identified land uses in the Limited subzone and their required permits (if applicable), are listed below:

1. Identified land uses beginning with letter (A) require no permit from the department or board;
2. Identified land uses beginning with letter (B) require a site plan approval by the department;
3. Identified land uses beginning with letter (C) require a departmental permit; and
4. Identified land uses beginning with letter (D) require a board permit, and where indicated, a management plan.

## L-1 AGRICULTURE

(C-1): Agriculture, within an area of one acre or less, defined as the planting, cultivating, and harvesting of horticultural crops, floricultural crops, or forest products, or animal husbandry.

(D-1) Agriculture, within an area of more than one acre, defined as the planting, cultivating, and harvesting of horticultural crops, floricultural crops, or forest products, or animal husbandry. A management plan approved simultaneously with the permit, is also required.

### **L-3 SINGLE FAMILY RESIDENCE**

(D-1): A single family residence in a flood zone or coastal high hazard area defined by the boundaries of the Federal Insurance Rate Maps (FIRM) that conforms to applicable county regulations regarding the National Flood Insurance Program and single family residential standards as outlined in this chapter.

### **L-4 WILDERNESS CAMP**

(D-1) Establishment providing educational and recreational programs for youth and adult groups, including campsites for overnight accommodations in tents. Facilities may include unimproved access road or trail(s), portable restrooms, and one meeting shelter not to exceed 600 square feet. A management plan, approved simultaneously with the permit, is also required.

Some key regulatory excerpts regarding the Resource subzone as it applies to Alakoko loko i'a:

### **R-8 BOTANICAL GARDENS, PRIVATE PARKS, AND NATURE CENTERS**

(D-1): For a profit or non-profit establishment featuring plants or other natural resources and offering tours or other nature-based, outdoors educational and recreational activities, primarily during daylight hours. Facilities may include access road, restrooms, shelters, and not more than one structure for housing, administration, and maintenance not to exceed 1,200 square feet, under a management plan approved simultaneously with the permit.

## **Kaua'i Sea Level Rise Constraint District**

The Kaua'i Sea Level Rise Constraint District is a designated area on Kaua'i aimed at addressing the impacts of sea level rise due to climate change (County of Kaua'i 2025). The Kaua'i Sea Level Rise Constraint District Viewer is an online atlas generated by data used in the creation of the Hawai'i Sea Level Rise Vulnerability and Adaptation Report (Hawai'i Climate Change Mitigation and Adaptation Commission 2021). The viewer provides visualizations depicting projections of future annual high wave run up and passive flooding hazards due to rising sea levels. This district assists landowners by providing data on properties to determine if a structure lies within and is subject to the provisions of the constraint sea level rise district, and provides data on the maximum flood depth that a proposed structure is exposed to. The county enforces this through specific planning and zoning regulations to mitigate risks associated with rising sea levels, such as flooding and erosion.

The Sea Level Rise Constraint District Viewer shows projections of areas expected to be inundated by passive flooding due to sea level rise and those impacted by annual high wave run up. Annual high wave run up is not projected to impact the

Alakoko property; however, some areas of the property, especially those at lowest elevation and closest to the loko i'a, are mapped as being impacted by passive flooding (Figure 5-2). Because the Alakoko property lies within a mapped tsunami evacuation zone, the site will be secured and evacuated whenever an official tsunami warning is issued.

Mālama Hulē'ia and the NPS-RTCA planning team used the county's Sea Level Rise Constraint District Viewer and related data to site structures outside of areas predicted for inundation.

## Climate Change

Climate change threatens Alakoko's socio-ecological well-being and the profound connections local and Native Hawaiian communities have with their environment. Because Alakoko is at low elevation in the coastal environment, it is among the most vulnerable areas in the Hawaiian Islands to impacts from climate change.

The red mangrove infestation and the associated changes to the ecosystem made Alakoko loko i'a more likely to experience adverse impacts from climate change. However, the mangrove removal projects and other restoration actions will help Alakoko adapt to future changes due to climate change. A healthy ecosystem is more resilient and can more likely recover from droughts or intense storms. The use of traditional agriculture methods can also provide erosion control and help preserve water quality.

For more information on how climate change may impact Alakoko loko i'a, see Chapter 5.

## Alakoko Kuhikuhi Pu'uone

### Overview

All buildings, facilities, and other infrastructure components that is proposed in this conceptual plan for Kuhikuhi Pu'uone is intended to mālama (care for) Alakoko loko i'a (Figure 6-5). As Mālama Hulē'ia shifts from conducting major restoration actions to ongoing management and operations, they are using adaptive management principles that are based on biocultural principles in order to be good stewards. The purpose of the Kuhikuhi Pu'uone is to provide the necessary infrastructure to appropriately manage Alakoko loko i'a and to provide educational programming and outreach to the community.

### Principles and Values

Mālama Hulē'ia's restoration efforts at Alakoko loko i'a and the development of the Kuhikuhi Pu'uone to support that work are guided by the following values and principles:

Alakoko Loko i'a Master Plan  
Site Concept/Not for Construction  
June 2025



Figure 6-5. Site conception plan for the Kuhikuhi Pu'uone.

- ▶ Repairing the ecosystem functions of Alakoko loko i'a through the application of Hawaiian ecological knowledge coupled with scientific studies and analysis, archaeological preservation, monitoring, and data collection.
- ▶ Increasing the native biodiversity.
- ▶ Integrating climate planning into the plan.
- ▶ Supporting native plants and animals, with special attention to the threatened and endangered species that utilize the area as habitat.
- ▶ Working closely with Hawaiian practitioners to influence the collective understanding of loko i'a and its purpose and function.
- ▶ Supporting biocultural research that advances the use of Hawaiian cultural approaches for restoration practices and stewardship of 'āina.
- ▶ Supporting the Native Hawaiian and local community culturally, physically, and spiritually, while fostering community pride, through community programs and educational outreach.

## Site Access

Mālama Hulē'ia intends to use the old hauling road on the western end of the property as the primary means of vehicle access and public entry, pending a right-of-way or other appropriate access agreement from the USFWS and Grove Farm (Figure 6-6). The existing road on the east end of the property, which is within an existing easement, will serve as a secondary administrative access point. It will be gated and will remain locked to restrict unauthorized access.

## On-Site Parking

10 parking spaces for staff and handicapped parking will be located on the mauka side of the new road alignment, adjacent to the hale kuke/lumi ke'ena (kitchen house and office building). Public parking will be located at the eastern end of the



Figure 6-6. Map showing the preferred access to Alakoko loko i'a using a road through Grove Farm and USFWS property and the current access road through private property.



Boulders, which would later be used to restore the loko i'a's wall, were staged on what will be a future area for parking.



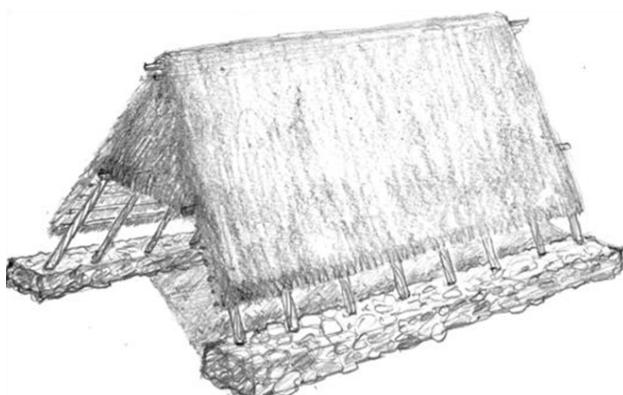
The ahu is the heart of the Alakoko site. It's where you arrive and gain entry.



Hale hālāwai, Loko Ea fishpond in Haleiwa, O'ahu.

site and will include 25 spaces developed on already-disturbed land. If Mālama Hulē'ia is able to acquire land from Grove Farm, they will explore relocating the primary vehicle parking area there.

## Circulation


The existing road will be realigned to the north, starting at the eastern end of the hale kia'i (caretaker housing). The road will continue mauka of the build-out area, closer to the cliff, and will drop back makai (towards the ocean) to reconnect with the existing road west of the proposed maintenance facility. The old road alignment will be revegetated and used as a foot trail. A bus turn-around loop will be developed between the primary Kuhikuhi Pu'uone area and the caretaker housing.

## Ahu

The ahu is the altar or shrine that welcomes people to this wahi pana (storied place). It was created for Alakoko at the beginning of the restoration project and provides the spiritual connection and supports the mission of Mālama Hulē'ia. It makes the heart of the Kuhikuhi Pu'uone and is in an open grassy area that will be used for activities for educational groups and community gatherings.

## Hale Hālāwai

The hale hālāwai (meeting house) will be the primary community meeting space in the Kuhikuhi Pu'uone and will be located approximately where the existing tent is, next to the ahu. At 30 ft x 50 ft (1,500 sq ft), it will be constructed with traditional methods and materials as described in Hawai'i Provisions For Indigenous Hawaiian Architecture Structures (Appendix X) section of Chapter 12 of the Kaua'i County building code.



An example of a hale wa'a. Source: APPENDIX X Hawai'i Provisions For Indigenous Hawaiian Architecture Structures section of Chapter 12 of the Kaua'i County building code, the traditional A-frame style.



Future meals for volunteer work days and for community members will be harvested from Alakoko. This plate includes dishes that would be prepared in the hale imu and kuke, including kalo (taro), i'a (fish), 'ulu (breadfruit), limu (seaweed), and watercress.

## Hale Wa'a

There will be two hale wa'a (canoe houses) at Alakoko loko i'a. One will be located at the western end of the Kuhikuhi Pu'uone, on the edge of the loko i'a. It will serve the canoe needs of the loko i'a. The other hale wa'a will be located near the bank of the Hulē'ia River, approximately where the existing canoe house was located. Both will have constructed canoe launches nearby. Each will be designed to fully enclose 3 canoes. At 20 ft x 60 ft (1,200 sq ft) each, they will be constructed with traditional methods and materials as described in Hawai'i Provisions For Indigenous Hawaiian Architecture Structures (Appendix X) section of Chapter 12 of the Kaua'i County building code, the traditional A-frame style.

## Hale Imu

The hale imu (cooking area) will include an imu (underground oven), a pulehu (traditional Hawaiian grill), and a smoker. This area, and its components except for the imu, will be mobile and generally located near the hale hālāwai. The total footprint will be approximately 20 ft x 20 ft (400 sq ft) and will be bare soil with some gravel and other treatments applied where necessary. There will be a metal awning set on four metal posts to cover the cooking area with a drying box on top. The awning will be 10–12 ft high.

## Washeteria

This will be the primary public shower facility for the site. It will be located near the headquarters building, makai of the new road alignment. The footprint will be approximately 20 ft x 20 ft (400 sq ft) and have a cement foundation. There will be spaces for changing areas and 6 showers. The gray water from the showers should be retained and directed towards the banana grove and other nearby plantings.



Mālama Hulē'ia staff and volunteers get muddy doing restoration work at Alakoko loko i'a, demonstrating the need for the washeteria on site.

both sides will be built to accommodate the equipment, vehicles, and materials needed to manage the loko i'a. The facility will be located on an apron of graded, compacted, and graveled surface of approximately 4,000 sq ft.

## Public Restrooms

Public restrooms will be incorporated into the site in an appropriate area near the hale kuahui. Up to 5 toilets (including 1 ADA accessible) are recommended. The toilets should be composting/incinerating types.

## Hale Kia'i

The hale kia'i (caretaker housing) will be located near the eastern end of the build-out area. It will be one single family residence, one story tall, and approximately 1,200 sq ft. There will be some additional space around the structure for use as private outdoor space, parking, or other uses. The space immediately south of the structure will have heavy vegetative screening for privacy.

## Hale Noho

The hale noho (dormitory) will be located near the boundary with the USFWS parcel, mauka of the existing road alignment. Its purpose is to provide temporary

## Hale Kuke/Lumi Ke'ena

The new Mālama Hulē'ia headquarters facility will be located in the middle of the build-out area, makai of the new road alignment and adjacent to staff parking, and will have a dual role of hale kuke (kitchen house) and lumi ke'ena (office building). The building will be two stories, with a footprint of approximately 1,200 sq ft. The top floor will serve administrative needs and provide office space, meeting space, and other functions that need to occur indoors. The bottom floor will be partially enclosed and include amenities such as a food processing area, a small commercial kitchen, and storage. This facility will be constructed using contemporary methods and materials.

## Hale Kuahui

The hale kuahui (maintenance facility) will be located mauka of the new road alignment. One large enclosed space approximately 30 ft x 60 ft (1,800 sq ft) with garage doors on



On-site camping during a special event.



Part of the existing plant nursery used to propagate plants used in Mālama Hulē'ia restoration efforts.

shelter for people tending to the loko i'a, and as a second covered and partially enclosed gathering space when not used for its primary purpose. 30 ft x 50 ft (1,500 sq ft), it will be constructed with elements of traditional methods and materials as described in Hawai'i Provisions For Indigenous Hawaiian Architecture Structures (APPENDIX X) section of Chapter 12 of the Kaua'i County building code.

## Camping

Camping will continue to be allowed only when necessary and in support of caring for the loko i'a. It will continue to be managed as a dispersed activity. Camping will be allowed across the parcel where it makes sense, and it will be managed to minimize adverse impacts to the loko i'a and its resources.

## Plant Nurseries

The propagation of plants is a critical task for the restoration and operation of the loko i'a. This plan does not designate specific areas to serve as plant nurseries. Instead, this plan identifies the importance of plant nurseries and directs staff to use available space that suits the propagation of each species.

## Utilities

Sustainable operations are a primary goal, but they must be weighed against ensuring continuous and reliable energy, water, and waste management for the Alakoko property.

Mālama Hulē'ia will explore the feasibility of operating Alakoko using solely solar power, or of tying into the Kaua'i Island Utility Cooperative (KIUC) power grid.

Gray water from the washeteria will include no chemicals that are potentially detrimental to the water quality of the loko i'a. All natural, gray-water-safe soap and cleaning materials will be required.

## Grove Farm Acquisition

Mālama Hulēia's long term goal is to acquire part of the Grove Farm property. If that happens, some of the functions and facilities currently planned for being in the Kuhikuhi Pu'uone would be relocated mauka to the farm property to the west of the loko i'a.

The purpose of siting certain facilities there would be to better protect the integrity of the natural systems of the loko i'a and its watershed and ecosystem, and to create more space for community activities, learning, and cultural practices.

The types of functions and facilities that would be better to move away from the loko i'a include:

- ▶ Equipment and materials storage;
- ▶ The primary vehicle parking area;
- ▶ Secured entry point;
- ▶ Food processing;
- ▶ Community spaces for retail, food trucks, and small events;
- ▶ Additional housing;
- ▶ Agricultural production.



## **Siting of Components Relative to Conservation District**

Most of the facilities in the Kuhikuhi Pu'uone are in the Limited subzone as they are situated near the edge of the loko i'a and geographic attributes of the site also provide constraints. The hale kia'i and parking are in the Resource subzone (Figure 6-7).

## **Siting of Components Relative to Sea-level Rise Constraint District**

Most of the buildings, including the hale kuahui, hale kuke/lumi ke'ena, hale noho, and hale kia'i, in the Kuhikuhi Pu'uone are outside of future annual high wave run up and passive flooding hazards due to rising sea levels as depicted in the Kaua'i Sea Level Rise Constraint District viewer (Figure 6-8).

## **Phasing**

This shared vision for the developed parts of Alakoko loko i'a will be implemented over time as funding becomes available. It is likely that the build-out for all the facilities for the Kuhikuhi Pu'uone in this plan will take many years and that it will be developed one piece at a time, possibly not in the order that was anticipated.

However, it will make sense to attempt to prioritize some aspects of the site plan before others so that further development can occur more quickly and easily. Instead of creating a development timeline, Mālama Hulē'ia has clustered each part of the site plan into three tiers of prioritization. The first tier would ideally be first in line.

### **Phase 1**

- ▶ Acquire the Right-of-Way from USFWS and Grove Farm to access the site from the western entrance.
- ▶ Construct the Hale Kuahui and consolidate those operations in one location, thereby freeing up space for further development.
- ▶ Build the Hale Hālāwai and set it up as one of the key spaces for sharing and learning.
- ▶ Reroute the road and set new circulation patterns into place.
- ▶ Relocate and replace the Washeteria.

### **Phase 2**

- ▶ Build the Hale Kia'i to fully secure the loko i'a.
- ▶ Construct the Hale Kuke/Lumi Ke'ena.
- ▶ Build the Hale Imu.

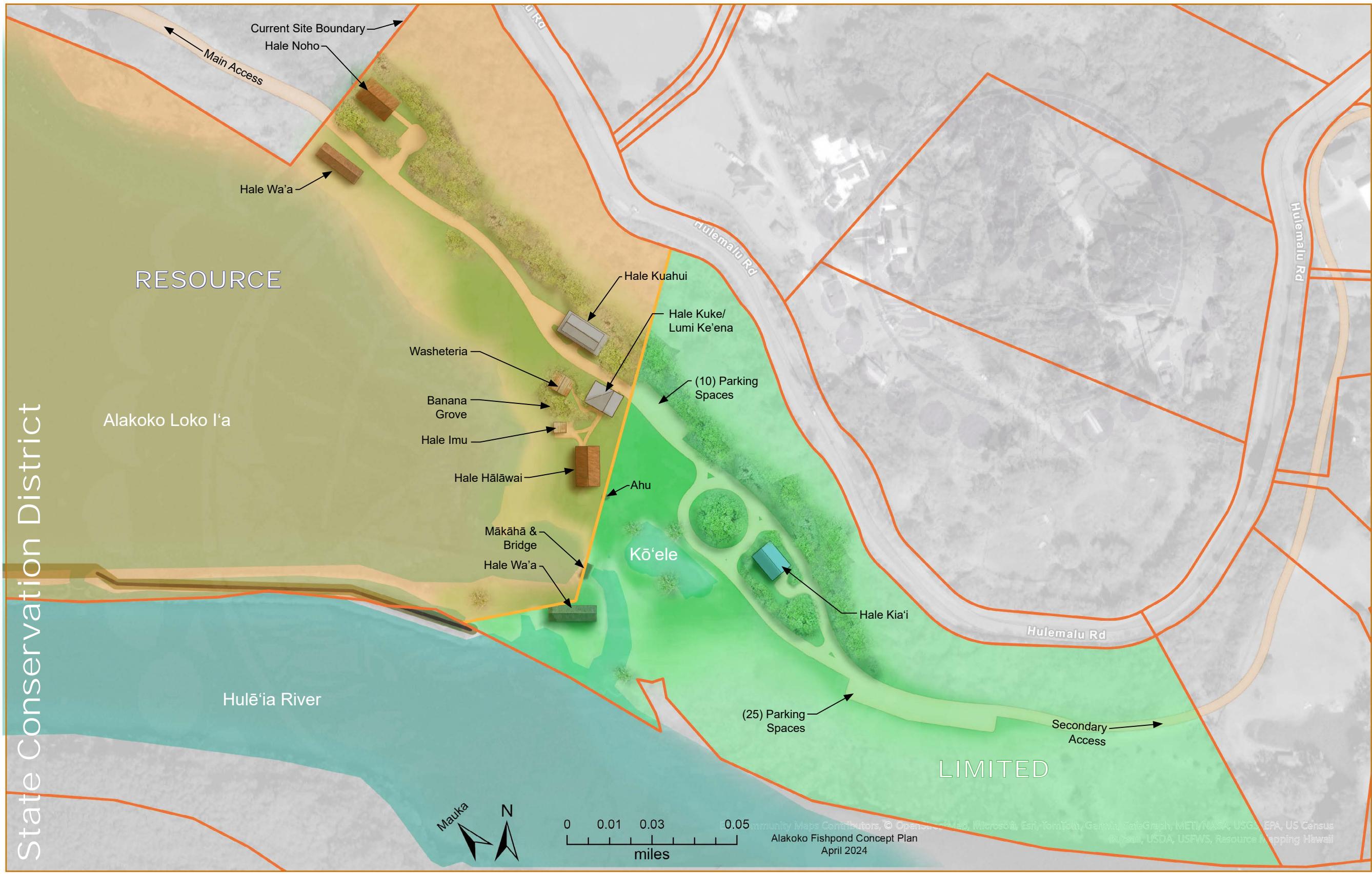



Figure 6-7. Siting of components in the Kuhikuhi Pu'uone relative to conservation district.




Figure 6-8. Siting of components in the Kuhikuhi Pu'uone relative to sea level rise constraint district.

### **Tier 3**

- ▶ Replace the Hale Wa'a on the banks of the Hulē'ia River.
- ▶ Build the Hale Wa'a on the shore of the pond.
- ▶ Build the Hale Noho near the western property line.



# Bibliography and References Cited

Brewington, L., B. Eichelberger, N. Read, E. Parsons, H. Kerkering, C. Martin, W. Miles, J. Idechong, and J. Burgett. 2023. Ch. 5. Pacific Island perspectives on invasive species and climate change. In S.J. Walsh, C.F. Mena, J.R. Stewart, and J.P. Muñoz Pérez, eds. *Island Ecosystems: Challenges to Sustainability*: 59–78. Springer, Cham, Switzerland. doi: [10.1007/978-3-031-28089-4\\_5](https://doi.org/10.1007/978-3-031-28089-4_5).

Caro, T., Z. Rowe, J. Berger, P. Wholey, and A. Dobson. 2022. An inconvenient misconception: Climate change is not the principal driver of biodiversity loss. *Conservation Letters* 15(3): e12868. doi: [10.1111/conl.12868](https://doi.org/10.1111/conl.12868).

Clilverd, H.M., Y.P. Tsang, D.M. Infante, A.J. Lynch, and A.M. Strauch. 2019. Long-term streamflow trends in Hawai'i and implications for native stream fauna. *Hydrological Processes* 33(5): 699–719. doi: [10.1002/hyp.13356](https://doi.org/10.1002/hyp.13356).

Cockett, P.M. 2001. 'Āina Kumuawai: Ahupua'a of Nāwiliwili Bay. Available at <https://lauhala.com/ainakumuawai/index.htm> (accessed 24 January 2025).

County of Kaua'i. 2020. Kaua'i County Code, Chapter 12 Building Code. Available at <https://www.kauai.gov/files/assets/public/v/1/public-works/documents/chapter-12-building-code-revised-07-16-20.pdf> (accessed 27 January 2025).

County of Kaua'i. 2025. Sea Level Rise Constraint District. Available at <https://www.kauai.gov/Government/Departments-Agencies/Planning/Sea-Level-Rise-Constraint-District> (accessed 25 August 2025).

El-Kadi A.I., R.S. Fujioka, C.C.K. Liu, K. Yoshida, G. Vithanage, Y. Pan, and J. Farmer. 2003. Assessment and protection plan for the Nāwiliwili watershed: Phase 2—Assessment of contaminant levels. Honolulu (HI): Water Resources Research Center, University of Hawaii at Manoa. WRRC-2003-02. Available at <https://scholarspace.manoa.hawaii.edu/items/b32ee2b4-c39f-4356-a565-93085cc12b6e> (accessed 24 January 2025).

El-Kadi A.I., M. Mira, S. Dhal, and J.E.T. Moncur. 2004. Assessment and protection plan for the Nāwiliwili watershed: Phase 3—Restoration and protection plan. Honolulu (HI): Water Resources Research Center, University of Hawaii at Manoa. WRRC-2004-05. Available at [http://health.hawaii.gov/cwb/files/2013/05/PRC\\_WatershedNawiliwiliBay.pdf](http://health.hawaii.gov/cwb/files/2013/05/PRC_WatershedNawiliwiliBay.pdf) (accessed 24 January 2025).

Environment Hawai'i. 2015. In Hawai'i, Mangrove's Drawbacks Outweigh Benefits. Available at <https://www.environment-hawaii.org/?p=7092> (accessed 05 March 2025).

Fechner, Caleb C., Ena M. Sroat, and Mara A. Mulrooney. 2022. Preservation plan for Alakoko Fishpond Niumalu Ahupua'a, Puna District, Kaua'i (SIHP-50-30-11-00501). Prepared by Pacific Legacy, Inc. for Mālama Hulē'ia.

Felton, D. 2021. Risks of sea level rise and increased flooding on known chemical contamination in Hawaii. Hawaii State Department of Health, Honolulu. Available at <https://health.hawaii.gov/heer/files/2021/06/Climate-Change-and-Chemical-Contamination-memo-updated-June-2021.pdf> (accessed 21 March 2025).

Freire, Paolo. 2009. From pedagogy of the oppressed. *Race/Ethnicity: Multidisciplinary Global Context* 2(2): 163–174.

Frazier, A.G., J.L. Deenik, N.D. Fujii, G.R. Funderburk, T.W. Giambelluca, C.P. Giardina, D.A. Helweg, V.W. Keener, A. Mair, J.J. Marra, S. McDaniel, L.N. Ohye, D.S. Oki, E.W. Parsons, A.M. Strauch, and C. Trauernicht. 2019: Ch. 5. Managing effects of drought in Hawai'i and U.S.-affiliated Pacific Islands. In *Effects of Drought on Forests and Rangelands in the United States: Translating Science Into Management Responses*. Vose, J.M., D.L. Peterson, C.H. Luce, and T. Patel-Weynand, Eds. U.S. Department of Agriculture, Forest Service, Washington Office, Washington, DC, 95–121. Available at <https://www.fs.usda.gov/research/treesearch/59164> (accessed 24 July 2025).

Frazier, A.G., M.-V.V. Johnson, L. Berio Fortini, C.P. Giardina, Z.N. Grecni, H.H. Kane, V.W. Keener, R. King, R.A. MacKenzie, M. Nobrega-Olivera, K.L.L. Oleson, C.K. Shuler, A.K. Singeo, C.D. Storlazzi, R.J. Wallsgrove, and P.A. Woodworth-Jefcoats. 2023. Ch. 30. Hawai'i and US-Affiliated Pacific Islands. In *Fifth National Climate Assessment*. Crimmins, A.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, B.C. Stewart, and T.K. Maycock, eds. U.S. Global Change Research Program, Washington, DC. doi: [10.7930/NCA5.2023.CH30](https://doi.org/10.7930/NCA5.2023.CH30).

Furness M., A.I. El-Kadi, R.S. Fujioka, and P.S. Moravcik. 2002. Assessment and protection plan for the Nāwiliwili watershed: Phase 1—Validation and documentation of existing environmental data. Honolulu (HI): Water Resources Research Center, University of Hawaii at Manoa. WRRC-2002-02. Available at <https://scholarspace.manoa.hawaii.edu/items/20e72d38-618f-4ded-8c49-e397ce2ea566> (accessed 24 January 2025).

Gagne, R.B. and M.J. Blum. 2016. Parasitism of a native Hawaiian stream fish by an introduced nematode increases with declining precipitation across a natural rainfall gradient. *Ecology of Freshwater Fish* 25(3): 476–486. doi: [10.1111/eff.12228](https://doi.org/10.1111/eff.12228).

Gavin, M.C., J. McCarter, A. Mead, F. Berkes, J.R. Stepp, D. Peterson, and R. Tang. 2015. Defining biocultural approaches to conservation. *Trends in Ecology & Evolution* 30(3): 140–145. doi: [10.1016/j.tree.2014.12.005](https://doi.org/10.1016/j.tree.2014.12.005).

Hawai'i Climate Change Mitigation and Adaptation Commission. 2017. Hawai'i Sea Level Rise Vulnerability and Adaptation Report. Prepared by Tetra Tech, Inc. and the State of Hawai'i Department of Land and Natural Resources, Office of Conservation and Coastal Lands, under the State of Hawai'i Department of Land and Natural Resources Contract No: 64064.

Hawai'i Climate Change Mitigation and Adaptation Commission. 2021. State of Hawai'i Sea Level Rise Viewer. Version 1.15. Prepared by the Pacific Islands Ocean Observing System (PacIOOS) for the University of Hawai'i Sea Grant College Program and the State of Hawai'i Department of Land and Natural Resources, Office of Conservation and Coastal Lands, with funding from National Oceanic and Atmospheric Administration Office for Coastal Management Award No. NA16NOS4730016 and under the State of Hawai'i Department of Land and Natural Resources Contract No. 64064. Available at <http://hawaiisealevelriseviewer.org> (Accessed 21 March 2025).

Hoffman, R. 1991. Highlights of Hawaii Wetlands Survey Report. A Review of Hawaii's Current Wetland Protection Activities and Recommended Actions. Preliminary Draft. Hawaii Department of Health. Honolulu, HI.

Johnson, Jay T., Richard Howitt, Gregory Cajete, Fikret Berkes, Renee Pualani Louis, and Andrew Kliskey. 2016. Weaving Indigenous and sustainability sciences to diversify our methods. *Sustainability Science* 11: 1–11. doi: [10.1007/s11625-015-0349-x](https://doi.org/10.1007/s11625-015-0349-x).

Keener, V.W., J.J. Marra, M.L. Finucane, D. Spooner, and M.H. Smith, eds. 2012. *Climate Change and Pacific Islands: Indicators and Impacts. Report for The 2012 Pacific Islands Regional Climate Assessment.* Washington, DC: Island Press. Available at [https://apdrc.soest.hawaii.edu/PaCIS\\_old/docs/PIRCA%202012%20Full%20Report.pdf](https://apdrc.soest.hawaii.edu/PaCIS_old/docs/PIRCA%202012%20Full%20Report.pdf) (accessed 24 March 2025).

Kikuchi, William. 1976. Prehistoric Hawaiian Fishponds, *Science* 193(4250): 295–299.

Kimmerer, Robin Wall. 2002. Weaving traditional ecological knowledge into biological education: A call for action. *Bioscience* 52:432–438. doi: [10.1641/0006-3568\(2002\)052\[0432:WTEKIB\]2.0.CO;2](https://doi.org/10.1641/0006-3568(2002)052[0432:WTEKIB]2.0.CO;2).

Kirch, P.V. 2011. When did the Polynesians settle Hawaii? A review of 150 years of scholarly inquiry and a tentative answer. *Hawaiian Archaeology* 12:3–26.

KUA. 2025. Hui Mālama Loko I'a. Available at <https://kuahawaii.org/huimalamalokoia/> (accessed 27 January 2025).

Kurashima, N., L. Fortini, and T. Ticktin. 2019. The potential of Indigenous agricultural food production under climate change in Hawai'i. *Nature Sustainability* 2(3): 191–199.

Louis, Renee Pualani. 2014 E ala e, in Jay T. Johnson, Renee Pualani Louis, and Andrew Kliskey, editors. *Weaving Indigenous and sustainability sciences: Diversifying our methods (WIS2DOM) workshop report.* National Science Foundation. Arlington, Virginia. Available at <https://ipsr.unit.ku.edu/cfirst/wis2dom/WorkshopReport2013.pdf> (accessed 24 January 2025).

Mackenzie, Melody Kapilialoha, S. K. Serrano, D. Kapua'ala Sproat, Ashley Kaiao Obrey, and Avis Kuipoleialoha Poai, editors. 2015. *Native Hawaiian law : A treatise.* Native Hawaiian Legal Corporation and Ka Huli Ao Center for Excellence in Native Hawaiian Law. Kamehameha Publishing.

Mālama Hulē'ia. 2021. Strategic Plan 2019–2024. Available at <https://malamahuleia.files.wordpress.com/2019/02/stategicplanmhf3.pdf> (accessed 27 January 2025).

Office of Conservation and Coastal Lands Hawai'i Department of Land and Natural Resources. 2025. Conservation District. Available at <https://dlnr.hawaii.gov/occl/conservation-district/> (accessed 27 January 2025).

Office of Conservation and Coastal Lands Hawai'i Department of Land and Natural Resources. 2025. Ho'āla Loko I'a. Available at <https://dlnr.hawaii.gov/occl/hoala-loko-ia/> (accessed 27 January 2025).

Post, V.E.A., A.L. Bosserelle, S.C. Galvis, P.J. Sinclair, and A.D. Werner. 2018. On the resilience of small-island freshwater lenses: Evidence of the long-term impacts of groundwater abstraction on Bonriki Island, Kiribati. *Journal of Hydrology* 564: 133–148. doi: [10.1016/j.jhydrol.2018.06.015](https://doi.org/10.1016/j.jhydrol.2018.06.015).

Secretariat of the Convention on Biological Diversity. 2009. *Connecting Biodiversity and Climate Change Mitigation and Adaptation: Report of the Second Ad Hoc Technical Expert Group on Biodiversity and*

Climate Change. Montreal, Technical Series No. 41, 126 p. Available at <https://www.cbd.int/doc/publications/cbd-ts-41-en.pdf> (accessed 25 March 2025).

Smith, E., Handy, E.G., and Pukui, M.K. 1972. Native planters in old Hawaii: Their life, lore, and environment. Available at <https://files.hawaii.gov/dlnr/ld/CCH-LD-01/exhibits/Plaintiff%20Sierra%20Clubs%20Exhibits/87%20Handy%20&%20Handy.pdf> (accessed 26 February 2025).

State of Hawai'i Department of Health. 1998. The Hawai'i Unified Watershed Assessment. Available at <https://files.hawaii.gov/dbedt/op/czm/initiative/nonpoint/uwa.pdf> (accessed 05 March 2025).

Turnbull, David. 2000. Masons, tricksters, and cartographers: Comparative studies in the sociology of scientific and Indigenous knowledge. Routledge. London.

Trauernicht, C., E. Pickett, C.P. Giardina, C.M. Litton, S. Cordell, and A. Beavers. 2015. The contemporary scale and context of wildfire in Hawai'i. *Pacific Science* 69(4): 427–444. doi: [10.2984/69.4.1](https://doi.org/10.2984/69.4.1).

University of Hawai'i Sea Grant College Program. 2014. Climate Change in Hawai'i: A summary of climate change and its impacts to Hawai'i's ecosystems and communities. Available at <https://seagrant.soest.hawaii.edu/wp-content/uploads/2018/05/smFINAL-HawaiiClimateChange.pdf> (accessed 24 March 2025).

University of Hawai'i Sea Grant College Program. 2015. Red mangrove invasive species action plan for the Hulē'ia. Available at [https://malamahuleia.files.wordpress.com/2015/06/red-mangrove-invasive-species-action-plan\\_final.pdf](https://malamahuleia.files.wordpress.com/2015/06/red-mangrove-invasive-species-action-plan_final.pdf) (accessed 27 January 2025).

US Fish and Wildlife Service. 2022. Director's Order No. 227: Fulfilling the Trust Responsibility to Tribes and the Native Hawaiian Community, and Other Obligations to Alaska Native Corporations and Alaska Native Organizations, in the Stewardship of Federal Lands and Waters. Available at <https://www.fws.gov/media/directors-order-no-227> (accessed 04 April 2025).

US Fish and Wildlife Service. 2025. Final Compatibility determination for environmental education and interpretation, Hulē'ia National Wildlife Refuge. Available at <https://www.fws.gov/media/final-compatibility-determination-environmental-education-and-interpretation-huleia-national> (accessed 23 June 2025).

U.S. Fish and Wildlife Service. 1998. Recovery Plan for the Hawaiian Hoary Bat. Available at [https://ecos.fws.gov/docs/recovery\\_plan/980511b.pdf](https://ecos.fws.gov/docs/recovery_plan/980511b.pdf) (accessed 23 July 2025).

U.S. Global Change Research Program. 2023. Fifth National Climate Assessment. Crimmins, A.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, B.C. Stewart, and T.K. Maycock, eds. U.S. Global Change Research Program, Washington, DC. doi: [10.7930/NCA5.2023](https://doi.org/10.7930/NCA5.2023).

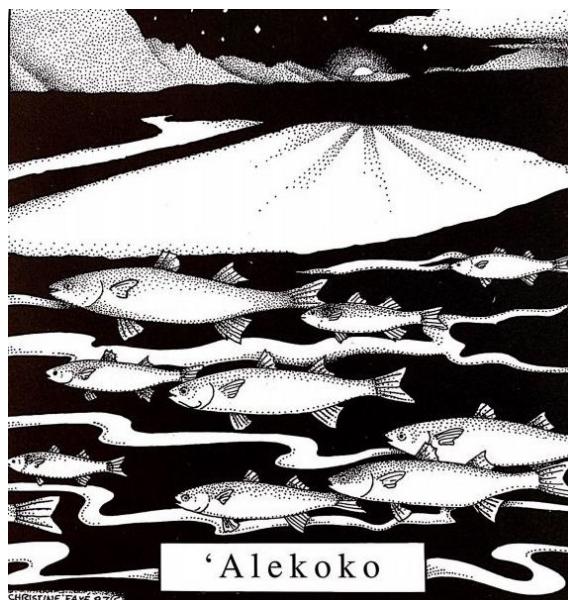
Winter, K.B., M.B. Vaughan, N. Kurashima, C.P. Giardina, K. Quiocho, K. Chang, M. Akutagawa, K. Beamer, and F. Berkes. 2021. Empowering Indigenous agency through community-driven collaborative management to achieve effective conservation: Hawai'i as an example. *Pacific Conservation Biology* 27(4): 337–344. doi: [10.1071/pc20009](https://doi.org/10.1071/pc20009).

Winter, K. B., N. K. Lincoln, and F. Berkes. 2018. The social-ecological keystone concept: A quantifiable metaphor for understanding the structure, function, and resilience of a biocultural system. *Sustainability* 10(9):3294. doi: [10.3390/su10093294](https://doi.org/10.3390/su10093294).

# Appendix 1

## The Name of Alakoko Loko I'a

---


---

Alakoko loko i'a is Mālama Hulē'ia's preferred name for this traditional Hawaiian fishpond. The site is also commonly known as Menehune Fishpond, which is how it is shown on U.S. Geological Survey topographical maps and in the U.S. Board on Geographic Names database (U.S. Board on Geographic Names 1981).

Alakoko is the spelling most commonly used in the earliest references from the 1800s. Mālama Hulē'ia board member Jan TenBruggencate has researched the many names that have been applied to this historic site:

*Most people today call it the Menehune Fishpond and many folks use the name 'Alekoko. However, Hawaiian Land Court records and Hawaiian language newspapers dating to the 1800s, in the earliest references, mainly use the spelling Alakoko. An 1852 Land Court document about lands in Niumalu, by surveyor W.H. Pease, refers to ka loko o Alakoko (the Alakoko fishpond). Issues of the newspapers Ka Leo o Ka Lahui and Nupepa Ka Oiaio from 1895 use Alakoko. In his 1923 book, Hawaiian Legends, William Hyde Rice, who was born on Kaua'i in 1846, uses Alakoko. In her book Koamalu, Ethel Damon, who was born in 1883, uses Alakoko.*

*The alternate spelling Alekoko, without the addition of the diacritical 'okina before the first letter, is seen, though rarely, before 1900. Not the first, but among the first to use the spelling Alekoko was Thomas Thrumb, who was not Hawaiian-born and not from Kaua'i, in a 1920 edition of the Journal of the Polynesian Society. The term with the Alekoko spelling appears in a story he wrote involving Menehune. Thrumb, originally*



*Australian, was a storyteller and publisher, and a powerful voice in the recording of Hawaiian stories—including a fair amount of bogus Hawaiian history. After Thrum's use of the spelling, Alekoko becomes an alternate spelling to Alakoko.*

*The big fishpond in the bend in the river has also gone by the names Pēpē'awa and even Niumalu loko. Pēpē'awa, while it sometimes has been used to refer to the pond, is apparently the name of the *ili* (a land division of an ahupua'a) in which it is found. Niumalu loko may simply be a term of reference rather than a valid name. It means "Niumalu pond" and may be used to refer to Alakoko in the way "city by the bay" refers to San Francisco.*

*The term Menehune Fishpond, which has gained popularity during the past century, is a reference to a complex story about either the entire construction or just the completion of the fishpond wall project by mythical Hawaiian forest dwellers.*

## Reference Cited

U.S. Board on Geographic Names. 1981. Summary Report Menehune Fishpond. Available at <https://edits.nationalmap.gov/apps/gaz-domestic/public/search/names/362318> (accessed 23 January 2025).

# Appendix 2

## National Coastal Wetland Conservation Grant Ranking Criteria

---

In 2017, Mālama Hulē'ia successfully applied to the National Coastal Wetlands Conservation Grants Program. This program provides annual grants up to \$1 million to coastal and Great Lakes states, as well as U.S. territories to protect, restore and enhance coastal wetland ecosystems and associated uplands.

The ranking criteria presented in this appendix was part of the grant application. It provides the data and outlines the needs, commitment, and anticipated results of the Alakoko loko i'a restoration project. Including it in this plan provides the project's commitments, including the 20-year commitment of ongoing stewardship to maintain the restoration areas.

### Reference Cited

Malāma Hulē'ia. 2017. Application to the National Coastal Wetlands Conservation Grants Program. Unpublished document.

## Section I Summary Information for Ranking National Coastal Wetlands Conservation Program

### 1. Wetlands conservation. Will the project reverse coastal wetland loss or habitat degradation in decreasing or stable coastal wetland types?

Mālama Hulē’ia’s goal is the eradication of invasive mangrove (*Rhizophora mangle*) from the entire Hulē’ia River watershed in a series of phased projects. This project proposal (Phase I) removes approximately 38% of the mangrove from the entire Hulē’ia river watershed. It will address key threats to sensitive coastal ecosystems and species by implementing specific restoration actions. Restoration work will be within Alekoko fishpond and surrounding estuarine wetlands, consisting of a total 26-acres of mangrove removal and re-planting native vegetation on 14.9-acres of regionally decreasing estuarine intertidal wetlands (NWI Code: E2FO3N). The project will restore the wetland by removing invasive, non-native plants and planting native Hawaiian coastal estuarine vegetation. The acres (11.1) identified for mangrove removal that are not included in the revegetation plan are either expected to return to estuarine deep water subtidal wetlands (NWI Code: E1UBLh), sand bar at the river edge, or are part of the historic fishpond structure (rock wall and historic nursery walls), see Map J3 in Section J. While these areas are not part of the vegetation plan, they are included in our long-term monitoring and maintenance plan and provide key habitat and foraging for endangered waterbirds and migratory seabirds. Ongoing monitoring and maintenance of the entire project area will ensure that mangrove does not reestablish. Those acres not initially included in the vegetation plan will be adaptively managed and if found that some areas are better suited for revegetation, they will be included in our planting efforts. See Section J (J-1 – J-6) for maps and images of the project area, specifically, Map J-3 and J-5, for project area details.

Nationally, estuarine intertidal wetlands are decreasing (T. E. Dahl, USFWS) and this trend is found within the Hawaiian Islands as well. Wetlands comprise a small percentage of the land mass on the Hawaiian Islands. In the State of Hawaii, estimates of wetland area ranges from 1.3 to 2.7% of the total land area (Hoffman 1991). Estimates of wetland loss in Hawaii have ranged from 12 to 31%, but detailed analysis of pre-historical and historical land use patterns are needed to accurately quantify the wetland loss. Published estimates likely underestimate the original extent of wetland habitats as large-scale land use changes occurred shortly after European contact before many historical records were maintained. Approximately 75% of the remaining 6,190 ha (15,474 ac) of wetlands throughout the state are degraded by non-native invasive plant species and altered hydrology due to urbanization and agriculture (HWJV Strategic Plan 2006).

While the current classification of the wetland within the project area is a nationally recognized wetland type, a healthy, thriving estuarine intertidal wetland in Kauai does not include the invasive red mangrove. Throughout the Pacific where native ecosystems have evolved with mangrove swamps, they play an important role for protecting coastal areas from storm and wave damage, and act as a land-building agent as suspended silt settles and accumulates around mangrove swamps (Stemmermann 1981). However, there are no mangrove species native to the Hawaiian Islands and two non-native invasive species of mangroves have become prevalent and have altered the ecological function of native coastal salt marshes, tidal flats, and ancient Hawaiian fishponds. Mangroves have caused increased siltation in natural and man-made connections between wetlands or between fresh and saline water sources, thereby further altering hydrological processes (USFWS Pearl Harbor NWR CCP, 2010). Multiple studies (Demopoulos and Smith 2010, Diorio et.al 2007, Allen 1998, Alongi and Sasekumar 1992, Smith et. al. 2000, Simberloff 1995) as well as management plans (see Tables 3 and 4 in Criterion 4 and 5) address the threats and impact that the mangrove has made within the natural wetland systems. The success and rapid proliferation of introduced mangroves over the last century has created many environmental concerns such as the loss of habitat for four endangered Hawaiian waterbirds, loss of fisheries nursery grounds, destruction of historic fishponds, and restructuring of the coastal wetland ecosystem (Allen 1998; Cox and Allen

1999). This project will remove the invasive plants, restore a native plant ecosystem, and restore an ancient and culturally significant fishpond, Alekoko.

**Table 1 Wetlands Conservation.**

| Project Area                            | Acres       | Percent of Project Site |
|-----------------------------------------|-------------|-------------------------|
| <b>Estuarine intertidal (E2FO3N)***</b> | <b>23.4</b> | <b>84%</b>              |
| Estuarine and Marine Deepwater (E1UBLh) | 2.6         | 9%                      |
| Upland Area                             | 2.0         | 7%                      |
| Total                                   | 28          | 100%                    |

\*\*\*Declining Wetland: Estuarine intertidal (E2FO3N)

**2. Maritime forests on coastal barriers. Will the application significantly benefit maritime forests on coastal barriers?**

This project is not eligible. Maritime forests are defined, for the purposes of this regulation, as broad-leaved forests that occur on barrier islands and along the mainland coast from Delaware to Texas.

**3. Long-term conservation. Will the project ensure long-term conservation of coastal wetland functions? The project must provide at least 20 years of conservation benefits to be eligible.**

With a long term license in place, Mālama Hulē’ia will manage and maintain the project for a minimum of 20 years and provide long term conservation benefits to the site and the entire Hulē’ia river. Mālama Hulē’ia will continue to realize the ultimate vision of eradicating mangrove from the entire watershed, which will contribute to this project’s success in the long term. Mālama Hulē’ia has a strong community-based mission that is committed to eradicating the mangrove and restoring a native, healthy, functioning ecosystem.

This project contributes to implementation of a comprehensive restoration plan for the Hulē’ia River watershed to eradicate invasive mangrove ensuring the project benefits will be sustained into the future. Project activities will be effective for more than 20 years. Once mangrove is removed and native Hawaiian coastal wetland vegetation planted, Mālama Hulē’ia is committed to managing the long-term benefits provided by this grant by implementing our adaptive management plans including vegetation monitoring and maintenance, wildlife monitoring, predator control and volunteer/stewardship program. Mālama Hulē’ia has formed a Technical Advisory Committee (TAC), Table 2, for the purpose of having the most relevant expertise and input to the development of our adaptive management plans. In addition, consultation with all relevant government agencies will be done to ensure that the adaptive management plans complement and contribute to the successful restoration of habitat for the native, migratory, and threatened and endangered species that will utilize the restored wetland.

**Table 2 Mālama Hulē’ia Technical Advisory Committee**

| Name and Organization                                                                                                 | Expertise                                                        |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Dr. Carl J. Berg, Mālama Hulē’ia Board President, Surfrider Foundation Board                                          | Water quality, bird surveys, stream habitat enhancement, ecology |
| Mike DeMotta, National Tropical Botanical Garden                                                                      | Native Hawaiian Plants, Nursery Consultation                     |
| Thomas Kaiakapu, DOFAW Kauai District Biologist                                                                       | Wetland Biology, Predator Control, Wildlife Monitoring           |
| Bill Lucey, Manager Kauai Invasive Species Committee (KISC)                                                           | Invasive Species, Predator Control, Leveraging Funds             |
| Michael Mitchell (or alternate depending on expertise), Deputy Project Leader, Kauai National Wildlife Refuge Complex | Wetland Management, Endangered Waterbirds, Permitting            |
| Mary J. Naone, (past) Lead Archaeologist DLNR SHPD                                                                    | Archaeological Inventory Study                                   |
| Kimberly Peyton, Research Scientist, DLNR DAR                                                                         | Fish Habitat, Fish Surveys                                       |

Mālama Hulē’ia has estimated that the cost for the long-term management to be \$360,000 for the 20 year period with support from long term funders as well as through partnerships (see Section K, Mālama Hulē’ia letter attachment, Stewardship Fund Plan for details). With our past project experience at Pu`ali wetland we know that community volunteers play an enormous role in contributing to successful long-term restoration. Mālama Hulē’ia is dedicated to maintaining a staff person (Hired June 5, 2017) to implement these management plans with the help of dedicated volunteers, agency partners and internship positions.

In addition to the long term (20-years with the option to extend) license agreement, there are a number of existing protection measures on the property. The property is within a Special Management Area, protected from development by County and State through layers of conservation including County zoning designation of Conservation, designated as Conservation Lands within the State Conservation District, as well as under the State and National Registry of Historic Places. Long term preservation and continued conservation of the site is enhanced due to its historical designation and significance of the site. Protections under the Special Management Area (SMA) requires a SMA permit, under enactment of Act 176, known as the Shoreline Protection Act. The permit is necessary to provide “...special controls on developments within an area along the shoreline are necessary to avoid permanent losses of valuable resources and the foreclosure of management options, and to ensure that adequate access, by dedication or other means, to public owned or used beaches, recreation areas, and natural reserves is provided.” It is state policy to preserve, protect, and where possible, to restore the natural resources of the coastal zone of Hawai‘i.

In addition to the SMA designation, the land is in a Conservation District, subzone as a resource, and zoned conservation within the County of Kauai. Under the Hawaii State Land Use Commission, Conservation lands are defined as lands in existing forest or water reserve zones and include areas necessary for protecting watersheds and water sources, scenic and historic areas, parks, wilderness, open space, recreational areas, habitats of endemic plants, fish and wildlife and all submerged lands seaward of the shoreline. Conservation Districts are administered by the State Board of Land and Natural Resources and uses are governed by rules promulgated by the State Department of Land and Natural Resources.

Under the State of Hawaii Conservation District Administrative Rule, 13-5-13, Resource (R) subzone is designated for specific uses. The objective of this subzone is to ensure, with proper management, the sustainable use of the natural resources of those areas (Auth: HRS §183C-3) (Imp: HRS §183C-4). Any change to that designation requires extensive action. Administrative Rules<sup>1</sup> are regulations established by the department through an extensive public review and hearing process. The procedure for administrative rules is set by Hawai‘i Revised Statutes (HRS) Chapter 91. Should any change to the use of the land be proposed (or amended), it must be drafted by the department, approved by the Board of Land and Natural Resources (BLNR) for public meetings/hearings, and reviewed by the Department of the Attorney General (AG). Then the draft is taken out to public meetings and/or hearings, where the public can give formal testimony on the draft rule. The rule is revised, if necessary, and then submitted to the Board of Land and Natural Resources for final approval. Then it is reviewed again by the AG, and after signing by the Governor and filing with the Lieutenant Governor, it has the effect of law. Thus, the conservation status provides an additional regulatory layer of protection for the project.

Alekoko Fishpond was listed on the National Register of Historic Places, authorized under the United States Department of the Interior, National Park Service in 1972 as well as on the Hawaii Register of Historic Places under the State of Hawaii Department of Land and Natural Resources. The property has a level of protection under the State and National Registry of Historic Places. The historic significance of the site under the federal and state registry, in addition to the conservation designation and willingness of the current land owners, Okada

---

<sup>1</sup> Referenced from: <http://dlnr.hawaii.gov/occl/rules/>

Trucking LLC. to lease the property for the purposes of long term restoration maintenance, environmental monitoring and education and perpetuation of traditional Hawaiian practices. Mālama Hulē'ia has secured a long term license of the property to ensure that Mālama Hulē'ia has the legal permissions necessary to conduct long term maintenance and has oversight of recreational access on the site. The larger term goal of mangrove removal from the entire watershed will continue to be pursued, which will also assist in the efforts to restore the functions and values of the wetlands and river to support wildlife as well as traditional stewardship of the river watershed.

**4. Coastal watershed management. Will the completed project help accomplish the natural resource goals and objectives of one or more formal, ongoing coastal watershed management plan or effort?**

The project is a key piece in coastal watershed management for the Nawiliwili watershed on Kauai. The Hulē'ia River comprises the largest portion of the Nawiliwili Bay watershed and has tidal saltwater influence for over two miles upstream from Nawiliwili Bay. The lower reach of the river and fishpond provide an important estuarine environment and nursery ground for many fish and crustacean species, and are crucial as endemic and migratory habitat. The Hulē'ia NWR abuts the Alekoko fishpond acreage in the lower reaches of the river (see Section J for map). The removal of the invasive red mangrove coupled with native wetland restoration within the Hulē'ia river is an essential management strategy for the recovery of Hawaii's endemic endangered water birds as well as efforts to restore the ecological function and water quality of the Nawiliwili watershed. This section identifies those plans and efforts that address the project need (Table 3).

A three-phase study was completed to assess the status of the Nawiliwili Watershed on Kauai and develop recommendations for restoration and protection (State Hawaii Department of Health, 2004). Strategies to improve functions and values of the watershed, as well as impacts were presented. This project supports the recommendations found in the report. It was found that mangrove contribute a significant amount of organic material to the streams, thereby increasing turbidity and nutrient concentrations and decreasing oxygen levels. Additionally, the extensive root system extending from these plants into the stream slows water flow and traps sediment. An anoxic environment, unsuitable for Hawaiian species, forms a degraded ecosystem among the roots. This leads to the filling in of the river and fishpond with sediment and its transformation from a tidal wetland to a supra-tidal mangrove forest ecosystem. This eliminates critical habitat used by native water birds and migratory shorebirds. The rock walls of the fishpond are being torn apart by the mangrove roots, and the estuary itself seems to be shrinking in size as the mangrove continues to spread into the fishpond open waters. It no longer provides suitable nursery grounds for native fishes and crustaceans.

The table below provides a summary of the other management plans that support the project. These management plans (Table 3) collectively recommend the restoration of native ecosystems that support the lifecycles of threatened, endangered, resident, and migrant species. Removal of invasive species is a key first step in that process. Together the management plans support the Nawiliwili Watershed studies and support efforts to continue the native habitat restoration of the entire Hulē'ia river.

**Table 3 Project Benefits to Existing Management Plans**

| Management plan or effort                                                                                                                                                | How this project helps implement plan goals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>County and State Plans (*specifically mentions Hulē'ia River or Alekoko Fish Pond)</b>                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *Assessment and Protection Plan for the Nawiliwili Watershed: Phases 1-3 – Restoration and Protection Plan, 2014 State of Hawaii Department of Health Clean Water Branch | A three-phase study was completed to assess the status of the Nawiliwili Watershed on Kauai and develop recommendations for restoration and protection. Hulē'ia river is one of the rivers within the watershed, and the study looked at the nine elements the U.S. EPA requires for a watershed based plan to address Section 319 of Section 303(d) of the federal Clean Water Act for listed waters. The Plan recommends the removal of the red mangrove and restoration with native plants as a key strategy to address the nine elements required |

|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                    | by the U.S. EPA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <i>*Pacific Coast Joint Venture Hawaii, Strategic Plan for Wetland Conservation in Hawaii, January 2006</i>        | The Plan provides recommended actions for the Hulē'ia river and recommends that the stream should be managed as a complex of wetland habitats. To be able to do this, mangrove removal is recommended to open up habitat for endangered Hawaiian waterbirds and to restore the ancient cultural resources at "Menehune" (Alekkoko) Fishpond.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <i>USFWS Revised Recovery Plan for Hawaiian Waterbirds; second revision (2011)</i>                                 | Addresses four species of Hawaiian waterbirds: the Hawaiian duck or koloa maoli ( <i>Anas wyvilliana</i> ), Hawaiian coot or 'alae ke'oke'o ( <i>Fulica alai</i> ), Hawaiian common moorhen or 'alae 'ula ( <i>Gallinula chloropus sandvicensis</i> ), and Hawaiian stilt or ae'o ( <i>Himantopus mexicanus knudseni</i> ), all listed as endangered. The project supports USFWS Waterbird Recovery Objective 1.3.2.2 - Control undesirable plant species. Undesirable plants, mainly introduced species such as... <i>Rhizophora mangle</i> (red mangrove), make wetlands less useful or unusable for waterbirds (Morin 1996, 1998; Rauzon and Drigot 2002; Chimner et al. 2006) These plants should be eliminated, where feasible, or controlled. Restored habitat will increase numbers by providing additional nesting, foraging and loafing areas and improving nesting success. Wetland restoration, including out-planting native species is listed as recovery objectives. |
| <i>Hawaii's State Wildlife Action Plan (2015)</i>                                                                  | The Strategy calls for maintaining, protecting, and restoring native ecosystems and native species and combating introduced invasive species. The invasive mangrove is called out in numerous locations noting that it reduces open water, mudflats, or shallows, all key to the life cycle of Hawai'i's endangered waterbirds. Removing and controlling mangrove is a management strategy for State owned wetlands, and key to the recovery of the endangered waterbirds. The document lists Hawaiian goose, duck, moorhen, coot, and stilt as species of greatest conservation needs, and lists wetland restoration and conservation as important conservation actions for recovery of these species.                                                                                                                                                                                                                                                                            |
| <i>Hawaii Coastal and Estuarine Land Conservation Plan</i>                                                         | Addresses the importance of estuarine systems and the need to protect and conserve. The proposed project is consistent with the goals and objectives. It recognizes that sheltered coastal wetlands in Hawaii support numerous unique plant and animal communities, and species dependent on Hawaiian estuaries are unusual in their ability to tolerate highly variable water quality conditions and significant sediment inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <i>USFWS Multi-Island Plants Recovery Plan.</i>                                                                    | Lists alien animals and plants as one of the primary causes of the historical declines on the Multi-island cluster taxa, and the presence of these introduced species as the continued primary threats to their survival and recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <i>Hawaii Fish Habitat Partnership. 2010. Hawaii Fish Habitat Partnership Strategic Plan. Honolulu, HI. 24 pp.</i> | Many of the important euryhaline species that are found in the Hulē'ia River/Alekkoko Fishpond are transient and utilize the fishpond and nearby waters as primarily juveniles, these include: papio (blue trevally, white ulua), 'ama'ama (striped mullet), Marquesan mullet ( <i>Valamugil englei</i> ), awa (milkfish), toau (blacktail snapper), and others (Table 2). These species generally avoid waters invaded by mangrove,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|                                                                         |                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                         | and restoration of suitable habitat for these species will enhance community productivity within the Hulē'ia River/Alekoko Fishpond project area and, as these transient fish mature, will move on to repopulate nearby open coastal waters and coral reefs. |
| <b><i>Regional and National Plans</i></b>                               |                                                                                                                                                                                                                                                              |
| <i>US Coastal Program Strategic Plan</i>                                | The Plan identifies restoration of coastal wetlands for the benefit of endangered waterbirds, within the Hawaii Focus Area, as a high priority.                                                                                                              |
| <i>Ducks Unlimited Conservation Plan (2001)</i>                         | Hawaiian wetlands are identified as a "High" priority for wetland conservation activities.                                                                                                                                                                   |
| <i>North American Waterbird Conservation Plan (2002)</i>                | Calls for restoration and protection of habitats that support the life cycle needs of water birds, including endangered waterbirds.                                                                                                                          |
| <i>Migratory Bird Program Strategic Plan (2004)</i>                     | Seeks to protect, restore, and manage migratory bird habitats such as the Hulē'ia watershed.                                                                                                                                                                 |
| <i>U.S. Pacific Islands Regional Shorebird Conservation Plan (2004)</i> | Calls for high quality habitat to ensure that shorebirds in the region are not unduly limited by habitat availability and directs that efforts to provide habitat for shorebirds are integrated into multiple species habitat management initiatives.        |

**5. Conservation of threatened and endangered species. Will the project benefit any federally listed endangered or threatened species, species proposed for Federal listing, recently delisted species or designated or proposed critical habitat in coastal wetlands? Will it benefit State-listed species?**

The Hulē'ia River and associated estuarine and marine wetlands provide habitat for endemic waterbirds, migratory birds, and shorebirds. Removal of the mangrove and restoration 26-acres of native wetland habitat will benefit the state and federally listed endangered Hawaiian waterbirds including the Hawaiian duck (koloa maoli, *Anas wyvilliana*), Hawaiian coot ('alae ke'oke'o, *Fulica alai*), Hawaiian morehen ('alae 'ula, *Gallinula chloropus sandvicensis*), and the Hawaiian stilt (ae'o, *Himantopus mexicanus knudseni*)." The Hawaiian goose (*Branta sandvicensis*) will also benefit as it frequents the adjacent lands on Hulē'ia NWR. The federally endangered Hawaiian hoary bat (*Lasiorus cinereus semotus*) is found within the Hulē'ia NWR and it is expected to benefit from the habitat restoration. Conservation of important lowland coastal habitat for foraging is essential for the recovery of the Hawaiian hoary bat (USFWS 1998).

Expanding foraging and nesting areas for the endangered species addresses the Draft Revised Recovery Plan for Hawaiian Waterbirds (USFWS 2011). See Table 4, below, for a summary of anticipated benefits. According to the U.S. Fish and Wildlife Service (2015-TA-0426 letter), the following species are known to occur or transit through the vicinity of the project area: Hawaiian stilt (ae'o, *Himantopus mexicanus knudseni*), Hawaiian moorhen ('alae 'ula, *Gallinula chloropus sandvicensis*), Hawaiian coot ('alae ke'oke'o, *Fulica alai*), Hawaiian duck (koloa maoli, *Anas wyvilliana*), and the Hawaiian goose (*Branta sandvicensis*). The project site is located adjacent to Hulē'ia NWR (Map J2 in Section J), whose purpose is to "conserve (A) fish or wildlife which are listed as endangered species or threatened species." 16 U.S.C. § 1534 (Endangered Species Act of 1973). The focus of Refuge management is habitat restoration and creating infrastructure, primarily for water management, to expand wetland functions throughout the Refuge and support conservation and recovery of the listed species that occur there. A key requirement to restore functioning wetlands is to remove the invasive species, such as red mangrove, and replant with native wetland plants that improve water management, provide the wetland foraging and nesting habitat to support the endangered Hawaiian waterbirds. Approximately 30 acres of wetland are currently being managed at Hulē'ia NWR, which comprises 240 total acres of wetland. This project will increase the appropriate wetland habitat by 14.9 acres, and support conservation and recovery of the listed species that are known from this area. As the proposed site abuts Hulē'ia NWR, has no fenced boundaries with the refuge, is part of the same river system, and the endangered waterbirds, bat, and migratory birds are known

to be in the area, we expect the endemic waterbirds, migratory birds, shorebirds, and bat to greatly benefit from habitat expansion.

The 2015 Hawaii State Wildlife Action Plan (SWAP) identifies potential areas for enhanced conservation management. These are areas where additional efforts are needed for the long-term conservation of Kauai's native wildlife. Hulē'ia stream and associated watershed were called out as core or supporting wetlands for Hawaiian duck (*koloa maoli, Anas wyvilliana*), Hawaiian coot ('alae ke'oke'o, *Fulica alai*), Hawaiian morehen ('alae 'ula, *Gallinula chloropus sandvicensis*), and the Hawaiian stilt (ae'o, *Himantopus mexicanus knudseni*), the Hawaiian goose (*Branta sandvicensis*), Pacific golden plover (kolea, *Pluvialis fulva*), ruddy turnstone ('akekeke *Arenaria interpres*), sanderling (hunakai *Calidris alba*), freshwater fishes, and freshwater invertebrates. They recognized that the implementation of the Waterbird Recovery Plan with the management of additional wetland habitat through coordination with private or public landowners, removal of invasive plants, and institution of predator control was needed. This project would be working to implement these recommendations. Mālama Hulē'ia will be removing the invasive red mangrove, restoring lost mud flats with native wetland plants, and is working with the private landowner as a long term conservation manager for the project site. Table 4 provides an overview of the endangered species and how the project supports their recovery.

**Table 4 Alekoko Restoration Project T&E Species and Benefits Summary**

| Threatened and Endangered Species at Alekoko - Benefits Summary |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 |                                            |
|-----------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Common Name<br><i>Scientific Name</i>                           | Status   | Mangrove Removal/Wetland Restoration Benefits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Does the project support the Recovery Goal*?                                                                                                    | Specific Recovery Objectives** Implemented |
| Hawaiian stilt<br><i>Himantopus mexicanus knudseni</i>          | FE<br>SE | <p>This action supports USFWS Waterbird Recovery 1.3.2.2 Control undesirable plant species. Undesirable plants, mainly introduced species such as...<i>Rhizophora mangle</i> (red mangrove), make wetlands less useful or unusable for waterbirds (Morin 1996, 1998; Rauzon and Drigot 2002; Chimner et al. 2006) These plants should be eliminated, where feasible, or controlled. Restored habitat will increase numbers by providing additional nesting, foraging and loafing areas and improving nesting success.</p> <p>The Hawaii State Wildlife Action Plan identifies Hulē'ia stream and associated watershed restoration and protection as needed for the long-term conservation of the Hawaiian coot, moorhen, and stilt.</p> | Yes, and supports the Hawaii State Wildlife Action Plan (2015) that specifically calls for the removal of red mangrove within the Hulē'ia river | 2, 3, and 4                                |
| Hawaiian duck<br><i>Anas wyvilliana</i>                         | FE/SE    | <p>This action supports Recovery 1.3.2.2 Control undesirable plant species. Undesirable plants, mainly introduced species such as...<i>Rhizophora mangle</i> (red mangrove), make wetlands less useful or unusable for waterbirds (Morin 1996, 1998; Rauzon and Drigot 2002; Chimner et al. 2006). Restored habitat will provide food for</p>                                                                                                                                                                                                                                                                                                                                                                                           | Yes                                                                                                                                             | 2, 3, and 4                                |

|                                                        |          |                                                                                                                                                                                                    |     |                                                                                      |
|--------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------|
|                                                        |          | foraging areas. The Hawaii State Wildlife Action Plan identifies Hulē'ia stream and associated watershed restoration and protection as needed for the long-term conservation of the Hawaiian duck. |     |                                                                                      |
| Hawaiian hoary bat<br><i>Lasiurus cinereus semotus</i> | FE<br>SE | Conservation of important lowland coastal habitat for foraging.                                                                                                                                    | Yes | 1998 Recovery Plan for the Hawaiian Hoary bat goal of protecting key foraging areas. |
| Hawaiian goose<br><i>Branta sandvicensis</i><br>nēnē   | FE<br>SE | The Hawaii State Wildlife Action Plan identifies Hulē'ia stream and associated watershed restoration and protection as needed for the long-term conservation of the Hawaiian goose.                |     |                                                                                      |

**USFWS Recovery Plan for Hawaiian Waterbirds\*****Recovery Goal:** The ultimate goal of the recovery program for Hawaiian waterbirds is to restore and maintain multiple self-sustaining populations within their respective historical ranges, which will allow them to be reclassified to threatened status (downlisted) and eventually removed from the Federal List of Endangered and Threatened Wildlife and Plants (delisted)

**\*\*Recovery Objectives:** Recovery of the four endangered waterbirds focuses on the following objectives:

1. Ensuring that population numbers are large enough to persist into the foreseeable future in the face of stochastic demographic variability;
2. Establishing multiple, self-sustaining breeding populations broadly distributed throughout each species' historical range to insure against population declines from localized demographic stresses;
3. Establishing and protecting a stable network of both core and supporting wetlands that are managed as habitat suitable for waterbirds, including the maintenance of appropriate hydrological conditions and control of invasive non-native plants;
4. Eliminating or controlling the threats posed by introduced predators, conditions that promote avian diseases, and contaminants to a sufficient degree for populations to be self-sustaining and
5. Specifically for the Hawaiian duck, removing the threat of hybridization with domestic mallards.

## 6. Benefits to fish. Will the project provide, restore or enhance important fisheries habitat?

Coastal wetlands adjacent to stream-mouth estuaries and historic fishponds in Hawaii have been severely degraded in recent decades as a result of encroachment of non-native woody vegetation, particularly red mangrove and hau bush. The prolific growth of these species results in altered hydrology and degraded water quality. In the case of Hulē'ia River/Alekoko Fishpond, waters that were historically open and circulating freely have become occluded by a thick overgrowth of mangrove. These reaches are now completely shaded by a dense canopy cover interspersed with trunks and prop roots. These areas lack water circulation and accumulate enormous amounts of leaf litter which create persistent anoxic conditions in the benthos and adjacent water column. All of these changes severely limit development of diverse and healthy fish and invertebrate communities.

This project will result in restoration and enhancement of estuarine and coastal wetland habitats that historically supported a variety of recreationally, commercially, and culturally important fish and invertebrates. Many of the important euryhaline species that are found in the Hulē'ia River/Alekoko Fishpond are transient and utilize the fishpond and nearby waters as primarily juveniles, these include: papio (blue trevally, white ulua), 'ama'ama (striped mullet), Marquesan mullet (*Valamugil englei*), awa (milkfish), toau (blacktail snapper), and

others (Tables 6, 7). These species generally avoid waters invaded by mangrove, and restoration of suitable habitat for these species will enhance community productivity within the Hulē'ia River/Alekoko Fishpond project area and, as these transient fish mature, will move on to repopulate nearby open coastal waters and coral reefs. Table 5, below, provides a summary of the fish species likely to occur, and known to occur within the Hulē'ia River and Alekoko fishpond. References include personal communication and observation by aquatic biologists (Don Heacock, State DLNR DAR, and Dr. Carl Berg, consultant), surveys at the Hulē'ia NWR by USFWS staff, and the Atlas of Hawaiian Watersheds.

**Table 5 – Fish and Invertebrates at Hulē'ia NWR and nearby waters**

| Scientific Name                  | Common Name                  | Hawaiian Name  | Status     |
|----------------------------------|------------------------------|----------------|------------|
| <b>Fish</b>                      |                              |                |            |
| <i>Eleotris sandwicensis</i>     | Hawaiian sleeper             | O'opu akupa    | Endemic    |
| <i>Awaous stamineus</i>          | Stream goby                  | 'O'opu nākea   | Endemic    |
| <i>Stenogobius hawaiiensis</i>   | Freshwater goby, naniha goby | O'opu naniha   | Endemic    |
| <i>Kuhlia xenura</i>             | Hawaiian flagtail            | 'āholehole     | Endemic    |
| <i>Kuhlia sandvicensis</i>       | Reticulated flagtail         | 'āholehole     | Endemic    |
| <i>Mugil cephalus</i>            | Flathead mullet              | 'Ama'ama       | Indigenous |
| <i>Chanos chanos</i>             | Milkfish                     | Awa            | Indigenous |
| <i>Sphyraena helleri</i>         | Barracuda                    | Kawele'a       | Indigenous |
| <i>Elops hawaiensis</i>          | Hawaiian tarpon              |                | Indigenous |
| <i>Caranx ignobilis</i>          | White ulua                   |                | Indigenous |
| <i>Lutjanus fulvus</i>           | Toau (juv)                   |                | Introduced |
| <i>Gambusia affinis</i>          | Mosquitofish                 |                | Introduced |
| <i>Poecilia sphenops</i>         | Mexican molly                |                | Introduced |
| <i>Clarius fuscus</i>            | Chinese catfish              |                | Introduced |
| <i>Neomyxus leuciscus</i>        | Sharp-nosed mullet           |                | Introduced |
| <i>Oreochromis mossambicus</i>   | Mozambique tilapia           |                | Introduced |
| <i>Sarotherodon melanotheron</i> | Black chin tilapia           |                | Introduced |
| <i>Tilapia zillii</i>            | Redbelly tilapia             |                | Introduced |
| <b>Invertebrates</b>             |                              |                |            |
| <i>Atyoida bisulcata</i>         | Hawaiian prawn               | 'opae kala'ole | Endemic    |
| <i>Macrobrachium grandimanus</i> | Hawaiian prawn               | 'opae 'oeha'a  | Indigenous |
| <i>Gonodactylus spp</i>          | Mantis shrimp                | Aloalo         | Indigenous |
| <i>Thalamita spp</i>             |                              | Alei'eke       | Indigenous |
| <i>Charybdis hawaiiensis</i>     |                              | Kuhonu         | Indigenous |
| <i>Thalamita crenata</i>         | Blue-pincher crab            |                | Indigenous |
| <i>Macrobrachium lar</i>         | Tahitian prawn               |                | Introduced |
| <i>Procambarus clarkii</i>       | Red swamp crawfish           |                | Introduced |
| <i>Metopograpsus thukuhar</i>    |                              | Alamihi        | Introduced |
| <i>Scylla serrata</i>            | Samoan crab                  |                | Introduced |

All of Hawaii's stream fish and larger invertebrates are diadromous and are dispersed downstream to seawater as larvae and then undertake an upstream migration to suitable river and stream habitat as returning juveniles. Populations of these stream fish and invertebrates are widely recognized as depleted. The restoration of natural flow conditions in the Hulē'ia River portion of the proposed project area will improve both adult resident habitat

and migratory pathways used by native freshwater and estuarine fish known from the Hulē'ia River and its tributaries. These include 'o'opu akupa (*Eleotris sandwicensis*) 'o'opu naniha (*Stenogobius hawaiiensis*), 'o'opu nakea (*Awaous stamineus*), 'opae oehaa (*Macrobrachium grandimanus*), hapawai (*Neritina vespertina*). The State of Hawaii Department of Land and Natural Resources (DLNR) Division of Aquatic Resources (DAR) is currently conducting a fisheries study on estuaries throughout the state, including the Puali Stream pilot project area, to determine the impact and benefits of mangrove removal and native habitat restoration for juvenile stages of important fish species. We continue to work closely with the DAR estuary team to utilize their study methodology and data collection at the proposed project site in order to measure the impact and benefits of our restoration efforts to the fishery resources.

**Table 6 Fish Species, Habitat Type and Benefits**

| Fish Species                                                         | Habitat Types & Benefits                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Mugil cephalus</i> , 'ama'ama, Striped Mullet                     | Indigenous herbivorous fish that prefers shallow estuarine habitat as juveniles and also utilizes these areas as adults for shelter and grazing. Open shallow habitat allows more growth of <i>limu</i> , or algae, which is a primary food source for this species; prized culturally and as a food fish in Hawaii. |
| <i>Eleotris sandwicensis</i> – 'o'opu akupa, Sandwich Island Sleeper | Endemic goby that is common throughout shallow open habitat in Hawaiian estuaries and stream mouths throughout Hawaii; targeted as a food fish and as bait                                                                                                                                                           |
| <i>Caranx ignobilis</i> , ulua aukea, Giant Trevally                 | Indigenous predatory fish that utilizes protected estuarine habitats primarily as juveniles; feeds on small fishes and crustaceans in these habitats; highly prized as a sport fish and food fish in Hawaii; open habitat in the fish pond would provide more foraging area for this species.                        |
| <i>Caranx melampygus</i> , omilu, Blue Trevally                      | Indigenous predatory fish that utilizes protected estuarine habitats primarily as juveniles; feeds on small fishes and crustaceans in these habitats; highly prized as a sport fish and food fish in Hawaii; open habitat in the fish pond would provide more foraging area for this species.                        |
| <i>Kuhlia xenura</i> , āholehole, Hawaiian Flagtail                  | Endemic fish, common in estuarine habitat as juveniles and adults; highly prized as a food fish; open shallow areas would provide more foraging area and habitat, especially for juveniles.                                                                                                                          |
| <i>Chanos chanos</i> , Awa, Milkfish                                 | Indigenous fish, common in estuarine habitat as juveniles and adults; highly prized as a food fish; open shallow areas would provide more foraging area and habitat, especially for juveniles.                                                                                                                       |
| <i>Scylla serrata</i> , Samoan crab,                                 | Large introduced crab common in estuarine habitat and comprising subsistence and recreational fishery in Hawaii. A top predator and scavenger it moves between estuary and reef flats in its natural habitat. It inhabits both mangrove and open areas in Hulē'ia estuary.                                           |
| <i>Thalamita crenata</i> , Blue-pincher crab                         | Large indigenous swimming crab common in estuaries. Forms a subsistence and recreational fishery in same areas as Samoan crab. Mangrove removal will increase suitable habitat in submerged wetlands.                                                                                                                |

**7. Benefits to coastal-dependent or migratory birds. Will the project provide, restore, or enhance important habitat for coastal-dependent or migratory birds?**

The project will provide benefits to coastal-dependent and migratory birds by restoring habitat and long term habitat protection and predator control. Table 7, below provides a summary of the bird species observed on the Hulē’ia NWR. Table 8 provides a list of bird species observed at Alekoko fishpond through the annual state bird surveys. Waterbirds and migratory shorebirds in Hawaii utilize coastal wetland habitat, with 80 percent of the state’s koloa maoli (*Anas wyvilliana* [Hawaiian duck]) population, and 50 percent of the state’s nēnē (*Branta sandvicensis* [Hawaiian goose]) population are found on Kaua’i (SWAP 2015). The 2015 SWAP identifies Hulē’ia stream and associated watershed as core or supporting wetlands for Hawaiian duck (koloa maoli, *Anas wyvilliana*), Hawaiian coot (‘alae ke’oke’o, *Fulica alai*), Hawaiian morehen (‘alae ‘ula, *Gallinula chloropus sandvicensis*), the Hawaiian stilt (ae’o, *Himantopus mexicanus knudseni*), the Hawaiian goose (*Branta sandvicensis*), Pacific golden plover (kolea, *Pluvialis fulva*), ruddy turnstone (‘akekeke *Arenaria interpres*), and sanderling (hunakai *Calidris alba*). Most of these species have been recorded at the restored Puali stream wetland. The implementation of the Waterbird Recovery Plan recommends the management of additional wetland habitat through coordination with private or public landowners, removal of invasive plants, and institution of predator control. The project will be working to implement these recommendations. We expect to see a similar list of species as Table 7 once the project restores native wetland habitat at Alekoko fishpond.

**Table 7 Observed Birds at Hulē’ia NWR**

| <b>Scientific Name</b>                  | <b>Common Name</b>          | <b>Hawaiian Name</b> | <b>*Status</b> |
|-----------------------------------------|-----------------------------|----------------------|----------------|
| <i>Asio flammeus sandwichensis</i>      | Hawaiian short-eared owl    | pueo                 | End            |
| <i>Branta sandvicensis</i>              | Hawaiian goose              | nēnē                 | End, E         |
| <i>Anas wyvilliana</i>                  | Hawaiian duck               | koloa maoli          | End, E         |
| <i>Gallinula chloropus sandvicensis</i> | Hawaiian moorhen            | ‘alae ‘ula           | End, E         |
| <i>Fulica alai</i>                      | Hawaiian coot               | ‘alae ke’oke’o       | End, E         |
| <i>Himantopus mexicanus knudseni</i>    | Hawaiian stilt              | ae’o                 | End, E         |
| <i>Nycticorax nycticorax</i>            | Black-crowned night-heron   | ‘auku’u              | Ind            |
| <i>Anas platyrhynchos</i>               | Mallard                     |                      | Mig            |
| <i>Fregata minor</i>                    | Great frigatebird           | ‘iwa                 | Mig            |
| <i>Ardea alba</i>                       | Great egret                 |                      | Mig            |
| <i>Anser albifrons</i>                  | Greater white-fronted goose |                      | Mig            |
| <i>Branta bernicla</i>                  | Black brant                 |                      | Mig            |
| <i>Branta hutchinsii</i>                | Cackling goose              |                      | Mig            |
| <i>Branta canadensis</i>                | Canada goose                |                      | Mig            |
| <i>Anas strepera</i>                    | Gadwall                     |                      | Mig            |
| <i>Anas penelope</i>                    | Eurasian wigeon             |                      | Mig            |
| <i>Anas americana</i>                   | American wigeon             |                      | Mig            |
| <i>Anas discors</i>                     | Blue-winged teal            |                      | Mig            |
| <i>Anas cyanoptera</i>                  | Cinnamon teal               |                      | Mig            |
| <i>Anas clypeata</i>                    | Northern shoveler           | koloa mohā           | Mig            |
| <i>Anas acuta</i>                       | Northern pintail            | koloa māpu           | Mig            |
| <i>Anas carolinensis</i>                | Green-winged teal           |                      | Mig            |
| <i>Aythya valisineria</i>               | Canvasback                  |                      | Mig            |
| <i>Aythya americana</i>                 | Redhead                     |                      | Mig            |
| <i>Aythya collaris</i>                  | Ring-necked duck            |                      | Mig            |
| <i>Aythya marila</i>                    | Greater scaup               |                      | Mig            |

|                                |                               |                |     |
|--------------------------------|-------------------------------|----------------|-----|
| <i>Aythya affinis</i>          | <i>Lesser scaup</i>           |                | Mig |
| <i>Bucephala albeola</i>       | <i>Bufflehead</i>             |                | Mig |
| <i>Pluvialis squatarola</i>    | <i>Black-bellied plover</i>   |                | Mig |
| <i>Pluvialis fulva</i>         | <i>Pacific golden-plover</i>  | <i>kōlea</i>   | Mig |
| <i>Tringa incana</i>           | <i>Wandering tattler</i>      | ‘ūlīlī         | Mig |
| <i>Tringa flavipes</i>         | <i>Lesser yellowlegs</i>      |                | Mig |
| <i>Arenaria interpres</i>      | <i>Ruddy turnstone</i>        | ‘akekeke       | Mig |
| <i>Calidris alba</i>           | <i>Sanderling</i>             | <i>hunakai</i> | Mig |
| <i>Calidris melanotos</i>      | <i>Pectoral sandpiper</i>     | <i>upupā</i>   | Mig |
| <i>Calidris acuminata</i>      | <i>Sharp-tailed sandpiper</i> | <i>upupā</i>   | Mig |
| <i>Limnodromus scolopaceus</i> | <i>Long-billed dowitcher</i>  |                | Mig |

\* Status Definitions (from *Hulē’ia NWR*) End=endemic, E=endangered, Ind=indigenous Mig=Migratory

Table 8, below, provides a summary of the birds observed within Alekoko Fishpond from the State DLNR DOFAW’s annual bird counts. These birds have been observed on the project site. It is anticipated that a restored, native ecosystem will support the species that are found adjacent, and are known in the area.

**Table 8 – Species Observed During Hawaii DLNR Annual Bird Surveys**

| TAXON NAME                            | COMMON NAME                    |
|---------------------------------------|--------------------------------|
| <i>Bubulcus ibis</i>                  | Cattle Egret                   |
| <i>Gallinula galeata sandvicensis</i> | ‘Alae ‘ula, moorehen           |
| <i>Anas wyvilliana koloa</i>          | Koloa, (Hawaiian duck)         |
| <i>Nycticorax nycticorax</i>          | auku‘u (night heron)           |
| <i>Himantopus mexicanus knudseni</i>  | Ae‘o, Hawaiian stilt           |
| <i>Fulica alai</i>                    | ‘Alae ke ‘oke‘o, Hawaiian coot |

Mālama Hulē’ia will be removing the invasive red mangrove, restoring lost mud flats and native wetland plants, and is working with the private landowner on long term management. This will lead to habitat for various life stages and needs of migrant, migratory, and coastal dependent birds. Table 9, below, provides a summary of the benefits to each specific migratory bird. We anticipate that the restoration of native habitat will benefit the life cycles and recovery.

**Table 9 Migratory Birds - species of greatest conservation need, Hawaii State Wildlife Action Plan**

| MIGRATORY BIRDS                                         | SPECIES STATUS                                                                 | HABITAT/LIFE CYCLE BENEFIT                                                                                                                       |             |
|---------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Kolea (Pacific golden plover)<br><i>Pluvialis fulva</i> | State recognized as Indigenous U.S. Shorebird Conservation Plan - High concern | Protect (or expand) habitat for wintering in Hawaii. Restored habitat will increase numbers by providing additional foraging and loafing areas.  | M<br>N<br>U |
| ‘Akekeke (Ruddy turnstone)<br><i>Arenaria interpres</i> | State recognized as Indigenous U.S. Shorebird Conservation Plan—High Concern   | Protection of coastal habitat. Restoration of additional coastal habitat, continued protection and management of wildlife refuges.               | M<br>N<br>U |
| Koloa mapu (Northern pintail)<br><i>Anas acuta</i>      | State recognized as Indigenous                                                 | Protection of current habitat. Restoration of additional wetland habitat, especially where it can be reclaimed from abandoned agricultural uses. | M<br>N      |

|                                                           |                                                                                  |                                                                                                                                                                                                                                             |             |
|-----------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Koloa moha (Northern shoveler) <i>Anas clypeata</i>       | State recognized as Indigenous                                                   | Protect and restore habitat to include a preferred food availability koloa mōhā are adapted to a diet primarily of aquatic invertebrates such as water fleas ( <i>Daphnia</i> spp.) and crustaceans (copepods and ostracods)                | M<br>N      |
| Lesser scaup<br><i>Aythya affinis</i>                     | State recognized as Indigenous                                                   | Protection of current habitat. Restoration of additional wetland habitat, especially where it can be reclaimed from abandoned agricultural uses. Restored habitat will increase numbers by providing additional foraging and loafing areas. | M<br>N      |
| Huna kai (Sanderling)<br><i>Calidris alba</i>             | State recognized as Indigenous                                                   | Protection of habitat. Huna kai will benefit from an increase in mudflats and river banks.                                                                                                                                                  | M<br>N<br>U |
| ‘Ulili (Wandering tattler)<br><i>Heteroscelus incanus</i> | State recognized as Indigenous U.S. Shorebird Conservation Plan—Moderate concern | Protection of current habitat. Protection and restoration of additional wetland habitat. ‘Ulili will benefit from an increase in mudflats and river banks.                                                                                  | M<br>N<br>U |
| American wigeon<br><i>Anas americana</i>                  | State recognized as Indigenous                                                   | Degradation of habitat due to pollution, hydrology alteration, or invasions by alien species is a major threat. Restoring wetlands and protecting habitat.                                                                                  | M<br>N      |

Recovery Plan Key:

M: Migratory Bird Program Strategic Plan seeks to protect, restore and manage migratory bird habitats.

N: 2002 North American Water Bird Conservation Plan – Calls for restoration and protection of habitats that support the lifecycle needs of water birds, including endangered waterbirds.

U: U.S. Pacific Islands Regional Shorebird Conservation Plan (2004) – Calls for high quality habitat to ensure that shorebirds in the region are not unduly limited by habitat availability.

**8. Prevent or reduce contamination. Will the project prevent or reduce input of contaminants to the coastal wetlands and associated coastal waters that are already contaminated?**

The primary goal of the proposed project is the removal of highly invasive mangrove and rebuilding of a biologically diverse Hawaiian intertidal estuarine wetland ecosystem, with all of its ecological services and functions; but a valuable ancillary effect will be improving water quality and water flow in Alekoko fishpond and its waters discharging in to the Hulē’ia estuary.

Alekoko fishpond is in the lower reaches of the Hulē’ia River and is set off from the river itself by an ancient Hawaiian rock wall. There are no known outside sources of contaminants from the land surrounding the fishpond. Sugar agriculture, the only industry of note in the upper reaches of the watershed, stopped in 2000. The land abutting Alekoko fishpond upstream and inland from the river is the Hulē’ia NWR (Map 2). Land inland from the fishpond is steep fallow former sugar land. Land immediately downstream is light urban. There has been no wetland fill by major debris, only minor urban garbage (bottles and cans) that will be removed along with mangrove propagules, wood, and weeds after cutting of the mangrove. No agriculture or livestock will occur on property surrounding the fishpond, in Hulē’ia NWR, or the steep slopes going inland from the fishpond.

Hulē’ia River is a EPA 303(d) listed watershed within the 2016 State of Hawaii Water Quality Monitoring and Assessment Report. Hulē’ia river is listed for exceeding: NO<sub>3</sub>+NO<sub>2</sub>, TN, turbidity and enterococcus bacteria. A Total Maximum Daily Load (TMDL) report comprises Hulē’ia River and the other streams (2008). Although

polluted by state standards, the lower reach of the river and fishpond provide an important estuarine environment and nursery ground for many fish and crustacean species, and are crucial as waterbird habitat.

Demopoulos (2004) found that invasive mangrove in Hawaii export more organic matter (leaf, wood, flowers, propagules) than in their native habitats (Puerto Rico), with very little particulate organic carbon retained in the soil. With low flushing rates in the fishpond, mangroves contribute a significant amount of organic matter in to the water column, thereby increasing turbidity and nutrient concentrations and decreasing oxygen levels. Extensive root systems extending from these plants into the stream slows water flow and traps leaf litter and sediment. An anoxic environment, unsuitable for Hawaiian species, forms a degraded ecosystem among the roots (Demopoulos, 2004). This leads to the filling in of the river and fishpond with litter and sediment and its transformation from a tidal wetland to a supra-tidal mangrove forest ecosystem, which eliminates critical habitat used by native waterbirds and migratory shorebirds. Culturally important rock walls of the fishpond are being torn apart by mangrove roots, and the estuary itself seems to be shrinking in size as the mangrove continues to spread into the fishpond open waters.

Mangrove (26 acres) will be removed by cutting the roots below the mean high tide level, thus causing the roots to rot away without regeneration. Recruitment of new seedlings into the fishpond from upstream will be controlled by a floating boom and suspended mesh in the wall gate opening. Periodic (bi-monthly) manual picking of newly set seedlings will also keep mangrove from re-establishing. School groups have been shown to be especially effective at mangrove “weeding”.

A three-phase study was completed to assess the status of the Nawiliwili Watershed on Kauai and develop recommendations for restoration and protection (State Hawaii Department of Health, 2004). The study addressed the recommended steps needed to improve the water quality to de-list and meet TMDL standards. Restoration of the wetland is one of the key steps in this process. Strategy 5 within the Nawiliwili Watershed plan is to control invasive and non-native species. The study noted that red mangrove is an invasive species targeted for removal.

While removal of mangrove from the rock wall may have little impact on the entire Hulē'ia River water quality, mangrove removal and wetland restoration within the fishpond should have a demonstrable effect on water oxygen levels, turbidity and nutrients in the fishpond. Water enters the fishpond through the permeable rock wall and through an opening approximately mid-way along the length of the wall. Water exits through the wall, over a low portion of the downstream wall and through a channel at the most downstream portion of the fishpond. No hydrographic studies have yet been done to quantify flow and flushing rates of the fishpond. Measurements will be done throughout the project to quantify the effects of mangrove removal and wetland restoration on key water quality parameters.

Invasive animal species (e.g. feral pigs, dogs, cats, rats) are contaminants that could have a major impact on the wetland ecosystem and particularly target the waterbirds. In addition to being predators *per se*, such animal species carry parasitic diseases e.g. toxoplasmosis that is known to affect Hawaiian geese, ducks and coots. There are active predator control programs on Kauai by the State Department of Land and Natural Resources (DLNR)-Kauai Invasive Species Committee, DLNR-Division of Forestry and Wildlife, and by USFWS at the abutting Hulē'ia NWR. While the members of those groups will provide local specific expertise, we are asking them to include our project area in their ongoing predator control efforts. We are committed to long-term invasive species and predator control as an important aspect of project management and maintenance. Mālama Hulē'ia will develop the monitoring and predator control program with the members of the Technical Advisory Committee, made up of local State and Federal subject matter experts. Consultation with the agencies will also be done to ensure success.

Removal of the mangrove trees increases sunlight to water, water flow and oxygenation, and thus helps control invasive mosquito populations and the diseases they carry that are known to affect birds on Kauai e.g. avian malaria (*Plasmodium relictum*), and avian pox (avipoxvirus) but that rarely affect waterbirds. The prevalence of

avian botulism (*Clostridium botulinum*) which is devastating to Hawaiian ducks, coots and moorhens on Kauai, will also be reduced by better water flow.

While there are numerous invasive plant species on the dryland edges of the fishpond, it is the red mangrove that dominates the intertidal wetlands, with little else growing there. Sea hibiscus (*Hibiscus tiliaceus*, known as Hau in Hawaii) is an invasive Polynesian introduction that forms dense thickets on dry land adjacent to the mangrove. While it extends branches in to the water, it does not root in intertidal areas. While we may trim Hau as it occurs intertwined with mangrove, we will not be clearing the dryland areas. Invasive grasses and other weeds will be pulled up from the newly exposed mudflats.

**9. Catalyst for future conservation. Will the project leverage other ongoing coastal wetlands conservation efforts in an area or provide additional impetus for conservation?**

This project proposal is designed to leverage and expand upon ongoing coastal wetlands protection and management in the area including the efforts to conserve threatened flora and fauna at the Hulē'ia NWR. The proposed project will catalyze Mālama Hulē'ia's efforts of eradicating invasive mangrove along the Hulē'ia river by removing approximately 38% of the total watershed mangrove acres and continuing to expand and develop community conservation involvement in a place that is historically and culturally significant. Note: This project represents the first phase of a two or three phase effort for complete eradication of red mangrove in the remaining portions of the river corridor.

This project will contribute to efforts of improving water quality by the State Department Health under the TMDL action plan and will stimulate other groups such as the Nawiliwili Bay Watershed Council to initiate other watershed projects leveraging off of the work we do to improve ecosystem function with this grant. For example with this project there will be more of an impetus for the Hulē'ia NWR to expand their management units, enhance the wetland corridor connecting to Alekoko restoration site, resulting in a 2 mile contiguous wetland complex along the river.

**Criterion 10: Partners in Conservation. Will the proposal receive financial support including in-kind match, from private, local, or other Federal interests?**

Below is a table of partners in conservation who have made a financial commitment to the proposed project. Letters of support and commitment are included as Section K.

**Table 10 Financial Partners in Conservation**

| Entity                              | Funding Amount       | Commitment                                                                                                                                                                                    |
|-------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Green Energy Team                   | \$59,182             | Hauling mangrove biomass                                                                                                                                                                      |
| County of Kauai                     | \$18,881             | The County is very supportive of the project. Past support (not included as match) is \$29,059 for planning and permitting support and \$18,881 for archaeological study (included as match). |
| Kauai Invasive Species Council      | \$9,186              | Predator control traps (\$500), Drone surveys (\$2000/yr * 2 years), KISC Crew labor (1-day \$2343/yr * 2 years= \$4,686)                                                                     |
| Private Donor                       | \$50,000 - \$100,000 | Unrestricted annual donation to support the MH mission of mangrove removal and watershed restoration                                                                                          |
| Carl J. Berg, Jr, Ph.D.             | \$12,000             | Nursery manager (10 hrs/month @ \$50/hr) = \$12,000                                                                                                                                           |
| Surfrider Foundation, Kauai Chapter | \$24,000             | Water Quality Monitoring: professional in-kind contribution of time and equipment will be:                                                                                                    |

|                |           |                                    |
|----------------|-----------|------------------------------------|
|                |           | 10 hrs/month @ \$100/hr = \$24,000 |
| Malama Hule`ia | \$560,597 | Detailed in Budget (Section B, 8)  |

Partner involvement that is not directly connected to financial contributions comes from the Technical Advisory Committee as described in Criterion 3 and Table 2. The project does include State technical support from DLNR – DAR, DOFAW and DOBOR. Federal contributions include project and technical support from USFWS, Hulē`ia NWR and a technical assistance grant from National Park Service Rivers, Trails and Conservation Assistance Program (approximately \$88,000).

## 11. Federal Share Reduced

Yes, Mālama Hulē`ia will contribute \$270,701 non-federal cash match above the required base match. State Trust Fund – Hawaii State qualifies for the 25% non-federal match as it has recurring funds for habitat conservation purposes. These funds are provided through the State's Legacy Lands Program. The Legacy Land Conservation Program is authorized under Chapter 173A, Hawaii Revised Statutes. This program provides funding from the Land Conservation Fund for the acquisition of lands, including easements, for watershed protection; parks; coastal areas; beaches; and ocean access; natural areas; habitat protection; agricultural production; cultural and historical sites; and open spaces and scenic resources. Eligibility has been previously approved and no change has occurred in the funds.

|                           |                                    |
|---------------------------|------------------------------------|
| <b>Total Project Cost</b> | <b>\$1,579,209</b>                 |
| Federal Share Requested   | \$999,731                          |
| Base Match (25%)          | \$333,244                          |
| Non-federal Cash Match    | \$270,701 CASH & \$453,134 In-Kind |

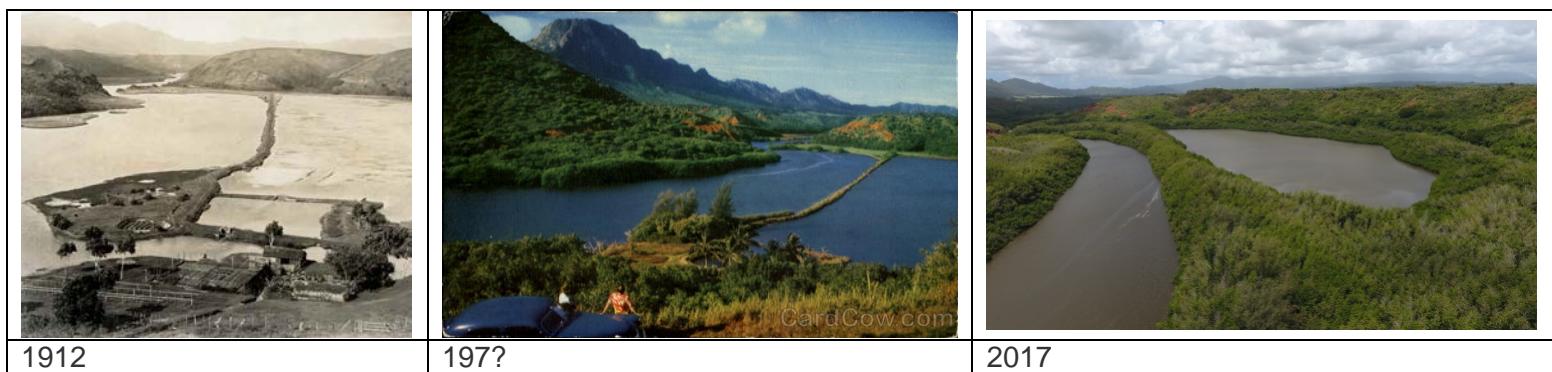
## 12. Education/outreach program or wildlife-oriented recreation. Is the project designed to increase environmental awareness and develop support for coastal wetlands conservation? Does it provide recreational opportunities that are consistent with the conservation goals of the site?

Hulē`ia River is a popular place for Hawaiian outrigger paddlers and for kayak tours for visitors to the island. Alekoko fishpond is a national and state historic property and thus has great significance for Hawaiian culture and for people to learn about Hawaiian fishponds. County of Kauai has made a scenic lookout on the road above the pond and has interpretive signage depicting the fishpond wall and cultural fishing practices of the fishpond. With collaboration of Hulē`ia NWR and the County, we will install interpretive signs depicting the endangered species of waterbirds present in, and the ecological functions of, the restored wetland. Mālama Hulē`ia's restoration efforts will be shared with recreational and educational groups with outreach materials about ecological functions and endangered species protection, that will enhance the experience for wildlife and culturally oriented recreation already taking place on the river.

Access to the coastal wetland restoration site will be limited to educational activities including traditional Hawaiian cultural activities and escorted volunteer and community groups who are providing service to the land. Primary focus for the first two years will be invasive species removal and planting of native plants. Our volunteer coordinator will continue existing programs with nearby primary and secondary schools, Kauai Community College, Rotary Clubs, and local businesses and restaurants looking for outdoor teambuilding experiences, as well as state vocational programs and landscape industry looking for training opportunities. Each group that volunteers with us will learn about the ecological importance of this coastal estuarine wetland and the wildlife that depend on it.

A gathering area will be set-up outside of the wetland restoration area, with guided access to the wetland for specific monitoring, maintenance and educational activities. Very limited fishing may be allowed in the future, based on fishery resource management and limited bird disturbance. With consultation from the agencies on

impacts to endangered species, we will review other fishpond restoration programs which offer a family fishing day each month with limited access by registration.


Mālama Hulē'ia staff will oversee volunteer and educational activities to allow the volunteer, educational, and recreational opportunities to be done in a managed way to ensure that the site is not loved to death. The goal of the education and outreach program is to protect natural and cultural heritage, and develop appreciation, understanding and *kuleana* (Hawaiian for responsibility) for the Alekoko fish pond and the entire watershed through education and interpretation. In addition, this program increases management capacity through volunteer programs and implements targeted educational and outreach efforts for the community, both residents and visitors.

**13. Other factors. Do any other factors, not covered in the previous criteria, make this project or site particularly unique and valuable?**

Other factors for consideration include the Hawaiian cultural benefits and sea level rise/climate change resiliency.

**Hawaiian Cultural Benefits**

Alekoko Fishpond, over the last 100-years



Fishponds are considered valuable cultural and ecological resources that can positively impact coastal ecosystems and their adjacent communities. Hawaiian fishpond systems, *loko i'a*, are some of Hawaii's most significant traditional cultural resources. They are biocultural articulations of Hawaiian innovation in the areas of engineering, education, hydrology, aquaculture and biology. Further, they demonstrate traditional Hawaii's excellence in sustainability, food sovereignty and natural resource management. Research shows that approximately 400 fishponds once functioned across the main Hawaiian Islands and provided a significant and sustainable food source to the Islands' population, estimated at 1,000,000 people. Many of those that remain are in disrepair. Many have been completely destroyed (DLNR 2013).

Alekoko (Menehune) fishpond, lies at a large bend in the Hulē'ia River, from which it is separated by a wall 900 yards long. It is the best example of a *loko 'wai* (inland fresh water fishpond) in the entire state, and is said to have been built by Menehune, suggesting that it was built during the earliest period of Hawaiian settlement. Alekoko Fishpond was listed on the National Register of Historic Places, authorized under the United States Department of the Interior, National Park Service (DOI, NPS) in 1972, as well as on the Hawaii Register of Historic Places under the State of Hawaii Department of Land and Natural Resources.

At the time of the national listing in 1972, the fishpond (as found in the official National register from 1972) was described as:

Located near the mouth of the Hulē'ia River on the southeast coast of the "garden isle" of Kauai. This ancient fishpond, also known as Alekoko Pond, consists primarily of a stone faced dirt wall that runs for over 900 yards and cuts off a large bend in the river for use as a fishpond. There is 50 yards of shallow

swamp land between the west end of the wall and the shore. A dirt wall runs for 145 yards whereupon the stone facing starts on the river side of the wall. The dirt wall is 5 feet above the water level, 4 feet wide on top and the dirt slants up on both sides. The facing wall begins with a single row of stones and then becomes of double thickness as it gets further out into the river and the current starts to become effective. The stones also become larger until the double layer is 2 feet thick. The stone facing on the outside is five feet high in most places and is quite perpendicular. The stones are very carefully fitted together; the stone facing runs for about two-thirds of the total length of the wall.

The 50 yards of “shallow swamp land” (wetland) have become thick stands of invasive mangrove, and the rock wall contains mangrove on either side, filling in both the Hulē’ia river and the inside of the fishpond itself. The statement of significance from the National Historic registry is as follows:

Menehune Fishpond is the most significant fishpond on Kauai, both in Hawaiian legends and folklore and in the eyes of Kauai’s people today. It is so old that its construction is attributed to the Menehunes, a mythical people inhabiting Hawaii before the Hawaiians arrived. Its antiquity makes it undoubtedly the oldest fishpond on Kauai and therefore it has an extremely high research potential. Additionally, it is the best example of an inland fishpond in the entire state. Close to the major urban center on Kauai, the pond has high public visibility because of a road that runs along the slopes of the hill behind the fishpond.

While the fishpond has a great viewing platform from above that is frequented by thousands of island visitors, the fishpond and the refuge from the road, the area is not open to the public. Access to the fishpond and coastal wetland restoration site will be limited to escorted volunteer and educational groups as described in detail for Criteria 12.

### **Sea Level Rise / Climate Change Resiliency**

This project will result in a healthy native ecosystem that will be more resilient in the case of sea level rise and climate change. Under currently predicted future climate scenarios, the spread of invasive species will likely be increased, which will mimic the current situation that Hulē’ia watershed is experiencing (Root et al. 2003). With rising sea levels, it is expected that the invasive mangrove in the Hulē’ia River will further spread into existing functioning wetland habitats (at Hulē’ia NWR for example) and would be detrimental if not removed. The Hulē’ia NWR is currently one of the highest functioning habitat areas on Kauai and in the Hawaiian Islands, supporting listed, endemic and migratory waterbirds. Wetland systems are vulnerable and susceptible to changes. Some of the most pronounced effects on wetlands are seen through alterations in hydrological function; specifically, the nature and variability of the hydro-period and the number and severity of extreme events. Climate change will affect the hydrology of individual wetland ecosystems mostly through changes in precipitation and temperature regimes. In the Hulē’ia River, altered hydrologic function by invasive mangrove is changing the flow and quality of water through the watershed. With increased storm events and increased intensity of storms, a river system that is choked out by mangrove will not allow for the river to flow at the rate to sustain increased rain and storm events. However, a restored, native wetland ecosystem can better accommodate high flow and storm events. Maintaining hydrology, reducing pollution, controlling exotic vegetation, and protecting wetland biological diversity and integrity are important activities to maintain and improve the resiliency of wetland ecosystems so that they continue to provide important services under changed climatic conditions (Kusler et al. 1999; Ferrati et al. 2005)

### **b) Additional Considerations/Tie-breakers:**

#### **1) Is the habitat imminently threatened from pending sale?**

No, the habitat associated with this project is not threatened from pending sale. However, Alekoko fishpond is imminently threatened by the invasive red mangrove. If not removed, it will continue to fill in the fish pond and

destroy its function. It will choke out native wetland species and not expand habitat needed to recover the endangered Hawaiian waterbirds.

**2) Does the site have unique and significant biological diversity?**

Yes the site, once this proposed project is implemented, will have unique and significant biological diversity, as the case was made in the earlier responses showing diverse species use in the area. Currently there are extreme limits to the biological diversity due to the monotypic mangrove.

**3) What are the costs per acre?**

Total project Cost of \$1,723,566 over the total project area of 28-acres results in a cost of \$61,556 per acre. This cost falls on the lower end of the range identified in our Invasive Species Action Plan prepared by UH SeaGrant in 2015. We expect other phases of the mangrove eradication project to have a higher per acre cost due to access, use of barge system and more extensive permitting.

**4a Are there new sources of funds, lands, or services being applied to this project? (As opposed to lands already owned by the state or third party that are being offered as match.)**

Access to the proposed coastal restoration project site is a new service to this project. The access is occurring by means of a newly donated long term license agreement by the landowner.

**4b) What percentage of the funds, lands, or services is new?**

100%. Mālama Hulēʻia has been reserving unrestricted funds to leverage grant match funds since 2015 and has been planning for this project during that time. However, this proposed project is new and no funds have been expended.

# Appendix 3

---

## Mo'olelo O Ka Laāhui Kaānaka I Kapa'ia Menehune, O Kaua'i

After the removal of invasive mangroves at Alakoko loko i'a, the fishpond reemerged as a powerful symbol of Hawaiian ingenuity and sustainability. It is once again a vital lifeline, and its restoration and revitalization has ignited a deep and profound connection with both the local community and those far beyond, sparking renewed interest, respect, and investment. The resultant increased demand for community outreach and educational programming offers an opportunity to honor and share the rich mo'olelo of this treasured place, breathing life once more into the stories that have long been woven into its shores. Mālama Hulē'ia is building a library rich with the mo'olelo of the area with continued research into traditional practices and sharing of knowledge.

In the late 1800s, James H. Kuhau Kaiwi, Esq., a distinguished community figure and kupa (resident, native) of Niumalu, compiled the history of Alakoko. Kaiwi's works were later translated into English and published by Thomas George Thrush in *The Journal of the Polynesian Society* (Thrugh 1920) without being recognized as the original author. However, Thrush's translations contained several significant misinterpretations.

As an educational advocate for Hawaiian language, Mālama Hulē'ia deemed it necessary to revisit Kaiwi's original description of the role of Menehune in the creation of Alakoko loko i'a (Kaiwi n.d.). The transcription project was undertaken with the intention to simplify access to Hawaiian language resources to enhance the educational experience at Alakoko loko i'a.

Mālama Hulē'ia staff member Tiele-Lauren Doudt's new translation is presented below. It, along with further information is available at <https://malamahuleia.org/wp-content/uploads/2021/07/kaiwi.pdf>.

### Mo'olelo O Ka Laāhui Kaānaka I Kapa'ia Menehune, O Kaua'i

'O ka lāhui kānaka i kapa 'ia ka Menehune, he kanaka li'il'i, ua 'ōlelo 'ia ma lalo iho o nā kuli o Nā-ipu-'ālehu. Inā he 'oia'i'o ia 'ōlelo pēlā a kahiko, a laila, ua li'il'i 'i'o nō; he 'ano peke, a pāha'a ma kahi 'ōlelo 'ana. He kino 'ano pa'akikī, he pu'ipu'i na'e a ka lawakua; he 'ili 'ula'ula, a he huluhulu ke kino, he mūkokikoki ka ihu, he mu'omu'o ka lae me ka pa'a i ka huluhulu; he nunui nā maka i uhi 'ia aku e ka hulu o ke ku'emaka, a he pupuka a kū i ka ho'omaka'u nā helehelena, e hoihoi 'ole ai 'oe ke nānā aku iā lākou.

'O ko lākou noho 'ana aia ma nā kuahiwi o uka o Waimea lā, aia paha ma kahi e kokoke ana ia wahi i kapa 'ia 'o Waineiki, ma laila ka

### Story of the Race of People Called the Menehune, of Kaua'i

The race of people called Menehune were very small, and were said to be shorter than the knees of Nā-ipu-'ālehu. If these words of the ancients are true, then that means that these people were indeed tiny; perhaps dwarf-like, short in stature. Yet they had strong bodies, sturdy with bulging muscles. Their skin was red, with lots of hair and snubbed-noses, and they had bulging foreheads that were covered in hair. Their large eyes were covered by their big eyebrows. They were said to be very frightening to gaze upon, something that was better off not looking at.

They lived in the uplands of Waimea,

'ike nui 'ia ai kēia 'ano lāhui. 'O ka lauhulu o ka mai'a 'oia kā ko lākou hale, 'o kā lākou kama'ilio 'ana he 'ano nunulu e like me ka nunulu 'ana a ka 'īlio; 'o kā lākou 'aka'aka 'ana he nunui ka leo; he po'e like loa kēia ma kā lākou mea e hana ai. He 'ano lāhui 'e'epa nō kēia ma ko lākou 'ano, kā lākou hana a me ko lākou noho 'ana. Ko lākou ola 'ana, ka mai'a, ka hinana me ka 'ōpae, ua mā'ona nō kā ka Menehune inā 'akahi a 'elua mai'a, a 'o ka piha lima ho'okahi ua mā'ona iholo no ka mea ho'okahi. 'O ka hinana a me ka 'ōpae nā i'a e lawe ai kēia po'e, no ka nui maoli o kēia 'ano lāhui kanaka; pēlā i hiki ai iā lākou ke hana i kekahi hana nui, i ho'okahi nō pō a ao, ua pa'a a pau ia hana i ka hana 'ia.

'O ka 'auwai 'o Kikī-a-Ola, mauka o ka muliwai o Waimea, na kēia lāhui Menehune i hana ia 'auwai, i 'eli a i nini i ka pōhaku a pa'a, a penei kā lākou hana 'ana. I ka pō paha 'o Akua i hana ai lākou i ka 'auwai 'o Kikī-a-Ola, a pa'a nō i ka pō ho'okahi. Ua 'ōlelo 'ia, ua kū laina lākou mai luna aku nei o ke po'owai o ka 'auwai 'o Kikī-a-Ola a hiki i lalo o Polihale, a ma luna o ka lima o kēlā a me kēia Menehune pākahi i halihali 'ia mai ai ka pōhaku mai kēia lō'ihī mai 'ane'ane paha e piha nā mile he 'elima a 'eono paha, eia na'e, ua pa'a nā 'auwai, ua komo ka wai a e kahe ana i ke kakahiaka 'ana a'e i hana 'ia ai ua 'auwai nei 'o Kikī-a-Ola. Hau'oli ke ali'i nāna i ho'olalelale i ua lāhui kānaka Menehune nei i ka lohe a 'ikemaka 'ana i ka pa'a o ua 'auwai 'o Kikī-a-Ola, a ola nō ho'i nā maka'āinana e noho ana ma Paliuli, a hala loa mai i kai i ke komo 'ana o ka wai, a ulu nā pu'epu'e o nā lo'i kalo a nā kānaka, a mana'o a'e ke ola.

'O ka pa'a nō o ka 'auwai 'o Kikī-a-Ola. Mai ke hana 'ia 'ana a ka Menehune i kēia lā, 'a'ohē mea nāna wāwahī a'e i kēia pa'a o ka 'auwai 'o Kikīaola, he 'ano ho'okalakupua nō ka hana a kēia 'ano kānaka li'ili'i. I ka pa'a 'ana o ka 'auwai 'o Kikīaola, ua hiki 'ole e lawe ua lāhui Menehune nei i ka mea 'ai 'ole

perhaps close to the area that is called Waineiki, for that is where these people were usually seen. Beneath banana leaves is indeed where they would reside, and sometimes their discussions were similar to the snarls of a dog. They would laugh very loud, which they often did while they were working. They were very peculiar people, in the way that they worked and in the way that they lived. Their livelihoods were based on mai'a [banana], hinana [baby 'ōpu fish] and 'ōpae [shrimp]. They were usually full after the first or second mai'a, so about one handful would be enough per person. The hinana and 'ōpae were the fishes that were preferred by most of these people, and that is often how they were paid for accomplishing their great feats. A project of theirs could be completed within a single night.

It was this race of Menehune that built the Kikī-a-Ola ditch, located uplands of the Waimea estuary. They dug and fenced the line of stones until it was completed. It is said that Kikī-a-Ola ditch was constructed within a single night beneath the Akua moon. It is said that they stood in a line from the po'owai [main water inlet] of Kikī-a-Ola ditch all the way until Polihale, and the stones were hand-passed by Menehune over five to six miles. But when the ditch was completed, water was able to enter and flowed the next morning at this place that is now called the Kikī-a-Ola ditch. When the chief who had encouraged the Menehune to build the ditch had heard that the project had been completed, he was overjoyed. The commoners who were living at Paliuli had freshwater, and so they could live and thrive off of the mounds within their lo'i kalo [taro patches].

And that is how Kikī-a-Ola ditch was created. To this day, nothing has been able to destroy Kikī-a-Ola ditch. The feats of these small people are wondrous indeed. When the ditch

e ola ai lākou, no laila, i ka hiki 'ole 'ana e ola lākou ke noho aku no Waimea, ke 'u'uku a ke 'emi maila ke kū 'ana o ka hinana iā Waimea, ua lohe 'ia aia he mau keiki ali'i nō ke huli ma Puna, Kaua'i, e noho ana i ke awāwa o ka muliwai o Kīpū mauka, a 'o Niumalu makai. E noho ana he kaikunāne, 'o 'Alekoko a me ke kaikuahine, 'o Kalālālehua, he mau ali'i u'i kēia o nā helehelena, ho'oholo like lāua e 'ūhana i mau loko i'a pākahi na lāua. I ka ne'e 'ana mai o ka Menehune e hana i kēia mau loko i'a a kēia mau keiki ali'i o Niumalu i 'ike 'ia a'e nei ma mua.

I ka hana 'ia 'ana o ka loko i'a a ua mau keiki ali'i nei, hana 'ia nō ho'i kā ke kaikunāne ma kekahī 'ao'ao mai o ka muliwai o Niumalu, e ho'olimalima 'ia nei i ka Pākē, a hana 'ia nō ho'i ka loko i'a a ke kaikuahine ma ka 'ao'ao 'o Kīpū, ka mea kupanaha 'ea, pa'a ke kuapā i nini 'ia me ka pōhaku ka loko i'a ho'i a ke kaikuāne, 'o 'Alekoko, a pa'a 'ole ho'i ka loko i'a a ke kaikuahine, 'o Kalālālehua.

I ka 'ōlelo 'ia, ho'okahi nō pō i hana 'ia ai kēia loko i'a, 'o ka pōhaku i hahau a nini 'ia ai kēia mau loko i'a, mai lalo mai ia o kahakai 'o Makali'i, me he lā he mile me hapa mai Niumalu mai, a i 'ōlelo 'ia he 'elua paha mile a 'oi aku ka mamao o ka pōhaku o kēia mau loko i'a i ki'i 'ia ai. E like nō me ka hana 'ia 'ana o ka 'auwai 'o Kikīaola, i ka pō a pa'a, pēlā nō kēia loko i'a i hana 'ia, pa'a ka loko o ke kaikunāne a pa'a 'ole ho'i ka loko i'a a ke kaikuahine, ao 'ē kā, pau ka Menehune i ka ho'i i uka o kuahiwi, no ka mea, he lāhui 'e'epa loa kēia i ka puka ka lā, he wahi iki wale nō koe a puni nō ho'i ka loko i'a a ke kaikuahine ao 'ē, lele a'e kā ia Menehune, a lele a'e a pēlā a pau loa nā Menehune i ka lele, a ao nō ho'i. 'Ike ke kaikuahine 'a'ole i pa'a kāna loko i'a, kaumaha loa 'o ia a 'ūwē no ka pa'a 'ole 'ana o kāna loko i'a, a hau'oli ho'i ke kaikunāne i ka pa'a 'ana o ka loko i'a, 'o ia 'o 'Alekoko. 'O ka pōhaku i nini 'ia ai kā ke kaikuahine eia nō ia ke pa'a nei i loko o ka muliwai a hiki i kēia lā.

was finished, the Menehune were not able to eat enough food to sustain themselves. The amount of hinana were decreasing in the river, so they could no longer make a substantial living in Waimea. They had heard that if they were to search in the Puna district of Kaua'i, that there are two royal children who were living in the valley along the rivermouth, with Kīpū on the mountain side and Niumalu on the ocean side. The siblings lived there together as brother and sister, the brother named 'Alekoko and the sister named Kalālālehua. Their chiefly features were quite beautiful, and it was for them whom the fishponds were built. The Menehune marched to build these fishponds for the royal children of Niumalu, as described above.

When the fishponds for the royal children were being built, the brothers' was built on the river mouth of Niumalu, which is now currently leased by the Chinese, and the sisters' was built on the Kīpū side, but something very strange was that the kuapā [fishpond wall] belonging to the brother 'Alekoko was completed, but the same could not be said for the fishpond belonging to Kalālālehua.

It is said that his fishpond was built in a single night, and that the rocks that were laid for both of the fishponds came from the sea below of Makali'i, which is perhaps a mile or so away from Niumalu, but is also said that the distance away could be two miles or longer. Just like the construction of the Kikī-a-Ola ditch, the fishpond belonging to the brother was completed in a single night, but the sisters' was never completed—for when daylight came—all of the Menehune had returned to the uplands, since they were so ugly to gaze upon in the light. There was only a small portion remaining to complete the fishpond belonging to the sister, but daybreak arrived and the Menehune departed. The sister saw

'O kēia mau keiki ali'i, 'o ia 'o 'Alekokō, ke kaikunāne, a me Kalālālehua, ke kaikuahine, aia nō he wahi awāwa e pili ana ma ka muliwi, 'o ia kahi i hānau 'ia ai kēia mau keiki ali'i; na ke ānuenue e pi'o mau ana ma ia wahi a hiki nō i kēia lā. Ua 'ike a kama'āina nā kānaka o kēia wahi ke pi'o ānuenue ma ua wahi awāwa nei, e 'ōlelo ana lākou nō ua mau ali'i nei, me ka 'ōlelo 'ia, "he mau ali'i u'i kā kēia."

Ma ka 'ōlelo a kama'āina o kēia awāwa 'o Niumalu, he 'ano kupua nō kēia mau keiki, 'o ke kaikuahine e loli ana i mo'o i kahi wā, a 'o ke kaikunāne e kua manō ana i kahi wā. Aia ma lalo pono'i mai nō o ua wahi awāwa nei, he lua hohonu, i kahi wā wela ka wai o kēia wahi, i kahi wā ko'eko'e ka wai. I kēlā wā paha ma mua hō'ike 'ia ia mau mea, i kēia wā nalowale loa.

Ma ka 'ōlelo o ko'u mau kūpuna i make, ua lohe nō lāua i ke 'ano o ka Menehune penei: aia lāua i uka o kēlā wahi 'o Waineki, moe lāua ma laila, ma kahi a ka Menehune o ka wā kahiko. I ka pō ua hō'ā 'ia, a e pu'u ahi nui pūlehu mai'a, 'a'ole lākou i 'ai mua i ka mai'a, e lilo mua 'ē 'ana i kēia po'e Menehune me ka lā'au loloa kā e kī'o'e mai aia i ka mai'a i loko o ka pu'u 'ahi e 'ā'ā 'ana. 'A'ole nō kā ho'i o ka li'ilī'i a kana mai o kēia 'ano lāhui, ho'omaka'ukau nō ho'i nā helehelena ke nānā aku 'oe, a pupuka nō ho'i a ke 'ino o nā maka, eia na'e, 'a'ole kēia he kānaka 'ano puni hulu a ho'āla hakakā wahi a ku'u mau kūpuna i lohe pono i ko lākou 'ano.

He kānaka li'ilī'i 'i'o maoli nō, he po'e maka'u loa i ke ao, a inā i ka pō, 'auwe, he hulu 'ā'ā ia nō kēia po'e kānaka. He lōkahi loa lākou ma kā lākou mau hana 'ano nui, he 'ano o'okalakupua maoli nō, nānā aku i ka 'auwai 'o Kikīaola a hiki mai i kēia lā, 'a'ole he mea hiki e aa a'e e hele e wāwahi i ka pa'a i hana 'ia e ka lāhui Menehune. I ka nānā pono 'ana i ke 'ano o ka pōhaku o ka nini 'ana he nunui maoli nō; a pēlā nō me ka loko i'a o

that her fishpond was not completed and began to cry, but the brother 'Alekokō was very happy that his was completed. The rocks that were stacked for the sister are still located within the rivermouth to this day.

As for these royal children, 'Alekokō and Kalālālehua, they were born in a valley along the same rivermouth, in the area where the rainbow continues to be seen arching today. The people of this place that are familiar with this area where the rainbow arches would often say, "here indeed are the beautiful chiefs."

According to the people who were from Niumalu, these children were thought of as sometimes being supernatural. Sometimes the sister would change into a mo'o [lizard, water spirit], and the brother would appear at other times with a shark's back. Right beneath the valley there is a deep cavern, where sometimes the water would be hot, and other times it would be cold. This was perhaps in a time much before us, for today it is no longer in existence.

According to my ancestors who have passed on, they had heard the stories of the Menehune like this: one day they were resting in the uplands of Waineki, close to where the Menehune used to reside. When night came, they made a fire to roast mai'a, but were never able to eat it because the Menehune would first scooped them up with long sticks from the burning fire. These people were so small that they were without comparison, and that their features were terrifying to behold, they were so very ugly to look upon, but nonetheless, these people were not covered in fur, and snarled and argued until the early mornings. My beloved ancestors justly understood what they were.

These people were indeed very small, and they were very afraid of daylight. The

'Alekkoko a hiki mai i kēia lā, 'oia pa'a nō a ka Menehune i hana ai 'oia pa'a nō ia i kēia lā e 'ike 'ia nei, eia na'e, ua ulu 'ia 'ē ka manienie ma waho mai o ke kuapā, 'o ia kāu pōhaku e 'ike 'ana, akā, 'o ka pōhaku ma luna iho ua nallowale i ka ulu nui 'ia o ka manienie. 'O ka pōhaku helele'i iho i laila 'o ia kā ka Pākē e ho'okau a'e i luna. I nā makahiki wai nui aku nei i hala, 'a'ole i ho'opōino iki 'ia kēia loko i'a e ka wai kahe, ua pi'i nō ka wai a a'e ma luna o kuapā, 'a'ole na'e i hiolo iki kekahī wahi o ka loko i'a a hiki i kēia lā.

'O ke kumu o ko'u mau kūpuna i lohe ai i kēia 'ano po'e kānaka, I uka o ia wahi 'o Waineiki, a ma luna pono a'e o ke awāwa 'o Wainiha e nānā pono iho ana kā i lalo. I pi'i ho'i ko'u mau kūpuna i ka 'ohi lā'au ala, na nā ali'i, a moe i kuahiwi, a moe aku i kuahiwi, a pēlā ko lākou 'ike 'ana i ua wahi o ua lāhui 'e'epa nei, he po'e maika'i, 'a'ohē he hana wale mai, ma ka mea'ai kā lākou e ki'i mai ai inā e pūlehu mai'a kānaka i kuahiwi ia manawa o ke au kahiko iō kahiko loa. Ke pa'a nei kēia mau wahi a ka Menehune i hana ai, 'oia pa'a nō ia lā 'oia nō ia i kēia lā. Na kēia mau wahi kaulana a ka Menehune i hana ai i 'ike 'ia ai ka nani o ka Akua, i ka hana 'ana i nā 'ano kānaka o kēlā 'ano a me kēia 'ano, a ma nā hana na'e i 'ike 'ia ai ka nani o ke Akua. Ma ka 'ōlelo a kahi po'e he Mū'aimai'a, akā, ma ka 'ōlelo a ko'u mau kūpuna, o ua lāhui Menehune nei nō ia.

Menehune worked together in their great feats, so much so that they are often considered supernatural. For example, if you look to Kikī-a-Ola ditch today, it is not something that is so easily taken apart and disassembled. If you look closely at the types of rocks that were stacked, there were very many—which is the same with 'Alekkoko—the work that the Menehune completed is long-lasting. Nevertheless, Mānienie grass has quickly grown on the exterior of the kuapā, but those are the same rocks, although the top layers of the rocks have disappeared due to the rampant growth of Mānienie. The crumbling rocks now above were placed by the Chinese. In past years with lots of water, the fishpond was not harmed. The water climbed until it reached the kuapā, but no part of the wall has fallen until today.

The reason why my ancestors know so much about these people is because they often went upland of Waineiki, directly above the valley of Wainiha. They went there to harvest wood for the chiefs, and slept in the uplands, which is how they became acquainted with this forementioned race of people, a great people who never harmed them, who were known to roast mai'a in the mountains a long, long time ago. But when things were completed by them, they were things that lasted well into our time. These famed places of the Menehune are known by the beauty of the Akua moon, and they were completed by such a different type of people, but their work was so great that God recognizes them for it. Some people call them the Mū-'ai-mai'a, but in the words of my ancestors, they were the Menehune.

## References Cited

Kaiwi, James H. Kuhau. n.d. Moolelo O Ka Lahui Kanaka I Kapaia Menehune, O Kauai. Translation. Doudt, Tiele-Lauren. Mālama Hulē'ia, 2021. Available at <https://malamahuleia.org/wp-content/uploads/2021/07/kaiwi.pdf> (accessed 27 February 2025).

Thrum, Thomas George. 1920. Story of the race of people called the menehunes, of Kauai (a Hawaiian tradition). *The Journal of the Polynesian Society* 29(2): 70–75.

# Appendix 4

## The Heart of Restoration: Cultivating Community Stewards for a Resilient Ecosystem

---

Restoration and stewardship efforts at Alakoko loko i'a are not only about ecological recovery; they also center on fostering a deep, lasting connection between the community and the land. Active participation of local communities, students, and educators in biocultural stewardship is integral to this process. Embedding the values of mālama 'āina (care for the land) into educational curricula and hands-on restoration work ensures that future generations are equipped with the knowledge and skills to sustain Alakoko loko i'a long-term. Integration of traditional ecological knowledge with contemporary scientific practices helps create a comprehensive and holistic model of stewardship.

This plan's education and stewardship efforts will involve people who use their culture, ecological knowledge, scientific observation, and ancestral practice to inform positive relationships with the environment. This approach will ultimately transform stewardship in Hawai'i in the future. Communities have a kuleana (right and responsibility) to care for Hawai'i. This includes not just a right to benefit from Hawai'i's environment (food, recreation, tourism, or otherwise), but a duty to both mālama (care for) Hawai'i and to ensure the people's concomitant right to do as much to assure abundance and well-being for future generations. Importantly, the education program addresses a goal of the U.S. Fish and Wildlife Service for Hulē'ia National Wildlife Refuge by providing experiential, place-based environmental education.

A stewardship program was developed based on traditional Hawaiian knowledge and practices coupled with Western science. From the practice of kilo (observation) to native plant propagation and water-quality testing, local community members and students are assisting with stewardship and monitoring activities of the restoration of a functioning loko i'a and wetlands which will serve as a nursery for engendered wildlife.



Monitoring for waterbird populations at Alakoko loko i'a.

A partnership with local schools was initiated to develop an biocultural education component that teaches Hawaiian practices and approaches as well as opportunities to learn about science, math, Hawaiian loko i'a, and cultural practices.

Mālama Hulē'ia will continue the data collection efforts at Alakoko loko i'a for terrestrial and aquatic species and water quality. They will also continue predator-control efforts. This provides data that measure changes and help to inform practices that support the restoration.

## Endangered Waterbirds and Migratory Birds

Alakoko loko i'a provides important habitat for native waterbirds that are listed as endangered by both the U.S. Fish and Wildlife Service (USFWS) and State of Hawai'i (see next page). These endemic species are threatened by habitat loss and degradation, altered hydrology, invasive plants, predation by nonnative species (avian, aquatic, and terrestrial), and climate change, and in the case of koloa maoli (Hawaiian duck), hybridization.

The Alakoko loko i'a property is also used by at least 30 species of migratory waterfowl and shorebirds. The habitat that the loko i'a and surrounding wetlands provide is critical to their survival.

Restoration actions at Alakoko should improve the habitat available to these species in the Hulē'ia watershed. Mangrove removal around the loko i'a and construction of the fish passage has restored the hydrology and opened up areas for native plants to become reestablished. Restoration of wetlands and the riparian systems associated with the punawai (freshwater springs) should also increase the habitat available to these species. Reestablishment of lo'i kalo (taro patches) and lo'i i'a kalo (taro patch with fish) aquaculture and agriculture will also provide important resources for resident and migratory birds. Traditional Hawaiian lo'i and wetlands provide nesting, loafing, and foraging habitat for endemic waterbirds (Gee 2007; Opie 2022). Lo'i systems can also provide nesting habitat for Hawaiian waterbirds that could help compensate for the loss of natural wetlands due to sea level rise, demonstrating that Hawaiian biocultural techniques can address both food security and ecological needs (Harmon et al. 2021; Kurashima et al. 2019).



Ae'o using habitat at the fish passage at Alakoko loko i'a.

To contribute to the recovery of these highly endangered waterbirds, it is important to manage Indigenous agro-ecological spaces with waterbirds in mind. The USFWS has extensive best practice guidelines to maximize waterbird success. Additional habitat modifications to those already being planned include increasing the amount of saturated soils, providing banks with a low, gently sloping profile to increase food availability, and the provision of safe nesting spaces such as kīpuka (floating islands) or habitat with some kind of predator exclusion option. Predator control is also a vital

# Endangered Hawaiian Waterbirds



Alakoko hosts several culturally and ecologically important native Hawaiian birds that are unique to Hawai'i. Their presence is an indicator of ecological health.

These species are endangered so every bird counts!



## Ae'o

Look out for ae'o in the mud flats and riverine areas at Alakoko – their pink legs are second only to the flamingo in relation to body size. They are great actors; if their nest is disturbed, they will perform a 'broken wing display', imitating an injured bird to lure predators away from their babies.



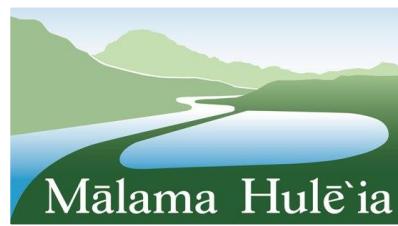
## 'Alae 'ula

There are only around 700 'alae 'ula left in the world but at Alakoko, they are easy to see. They are the mythical 'firebringer'; in Hawaiian legend, the 'alae 'ula stole fire from the god Maui to give to humans and was branded with a red frontal shield in retribution! Like all these waterbirds, they are vulnerable to being killed by feral cats because they evolved without predators.



## 'Alae ke'oke'o

'Alae ke'oke'o are rare at Alakoko but the ongoing restoration work will provide the habitat that they need. They build floating nests and adults share nesting duties. These birds also kick box; in territorial battles, they balance upright to kick intruders! They will travel long distances, even between islands, to find food.




## Koloa maoli

These birds are survivors! Several species of duck and geese went extinct in Hawai'i, but koloa maoli are still present and Alakoko provides good habitat for them. Their varied diet of wetland vegetation, snails, worms, and flying insects helped their survival. In legend, these ducks are said to have guided the ten spears of the blind warrior king Imaikalani to their target.

## Nēnē

The Nēnē is the state bird and the rarest goose in the world, but they have recovered from a low of less than 50 birds in the 1950s. They have evolved long toes and reduced webbing on their feet to navigate rocky volcanic ground. Nēnē can live for 30 years. They currently pass over Alakoko but could use the habitat in future.



Mālama Hulē'ia is a community-based mālama 'āina nonprofit organization leading the restoration of Alakoko loko i'a.

*All photos credited to USFWS.*

*This page:*

*Dan Clark ('alae ke'oke'o),  
Gary Kramer (ae'o, 'alae 'ula),  
Laurel Smith (koloa maoli, nēnē)*

*Opposite page:*

*Dan Clark ('alae ke'oke'o),  
Gary Kramer (ae'o, 'alae 'ula, nēnē),  
Laurel Smith (koloa maoli)*

# Migratory Waterfowl



## Mālama Hulē`ia

Bird migration across the vast Pacific to Hawai`i is one of the most impressive feats in the animal kingdom. Thirty species of migratory waterfowl and thirty migratory shorebirds rely on wetlands here. Making sure that habitat is available when the birds land is key to their survival.



**Koloa mōhā**  
Northern shoveler  
*Spatula clypeata*

*Credit: USFWS*



**Koloa māpu**  
Northern pintail  
*Anas acuta*

*Credit: USFWS, Tom Koerner*



**American wigeon**  
*Mareca americana*

*Credit: USFWS, Steve Emmons*



**Lesser scaup**  
*Aythya affinis*

*Credit: USFWS, Valerie Fellows*

# Migratory Shorebirds



**Kōlea**  
**Pacific golden-plover**  
*Pluvialis fulva*

*Credit: USFWS, Laurel Smith*

**Kioea**  
**Bristle-thighed curlew**  
*Numenius tahitiensis*

*Credit: USFWS*

**ʻUlili**  
**Wandering tattler**  
*Tringa incana*

*Credit: USFWS*

**Akekeke**  
**Ruddy turnstone**  
*Arenaria interpres*

*Credit: USFWS, Kaleomanuiwa Wong*

**Hunakai**  
**Sanderling**  
*Calidris alba*

*Credit: USFWS, Peter Pearsall*

# Alakoko Resident Species



Flying pueo credit: Laura Wolf CC BY 2.0

## 'Auku'u

**Black-crowned night heron**  
*Nycticorax nycticorax hoactli*

*Credit: USFWS, Laurel Smith*



## Koa'e kea

**White-tailed tropicbird**  
*Phaethon lepturus*

*Credit: USFWS*

## Koa'e 'ula

**Red-tailed tropicbird**  
*Phaethon rubricauda*

*Credit: USFWS, Dan Zimmerman*

## Pueo

**Hawaiian short-eared owl**  
*Asio flammeus sandwichensis*

*Credit: NRCS*

## 'Ope'ape'a

**Hawaiian hoary bat**  
*Lasiurus semotus*

*Credit: Forest & Kim Starr. CC BY 3.0.*

component, because these birds evolved without predators and have no defences against them. High quality and consistent predator control will increase adult survival and breeding success.

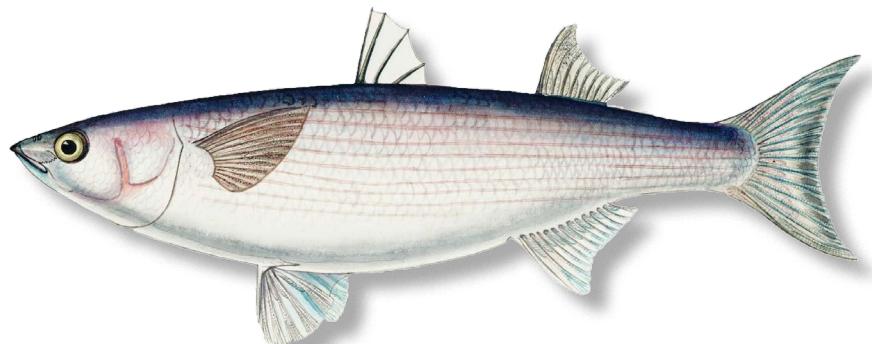
The available bird habitat at Alakoko loko i'a is currently in flux with the ongoing restoration actions. Much of the area around the pond still has exposed soil and only a few areas have been revegetated with native plants to date. The areas around the channel for the fish passageway already provides good habitat for 'alae 'ula (Hawaiian moorhen) and koloa maoli and both species can be regularly found there.



'Alae 'ula with chick at Alakoko loko i'a.

## Bird Surveys

Mālama Hulē'ia has been working with ecological-consulting firm Archipelago Research and Conservation (ARC) to survey for endangered waterbirds and migratory waterfowl and shorebirds. Surveys are performed at least monthly by ARC biologists and/or Mālama Hulē'ia staff who have received training from ARC. Pacific Birds Habitat Joint Venture has also been instrumental in providing support with grant writing, technical advice and transfer of knowledge. Data collected during surveys include counts of native, migratory, and introduced predatory birds (e.g., cattle egret [*Bubulcus ibis*] and barn owl [*Tyto alba*] ), bird behaviors, the presence of nests, and any observed mortalities or injuries, as well as weather and wetland conditions.


## Aquatic Species

The presence of waterbirds is not the only indicator of a healthy ecosystem. The populations of native fish species other native aquatic organisms like crabs and shrimp as well as phytoplankton in Alakoko loko i'a also are dependent on the health and productivity of the overall hydrologic system. Invertebrates and limu (aquatic vegetation including seaweed) are also part of the food web of Alakoko.

Input of wai (fresh water) from punawai and kahawai (freshwater streams) is essential for the productivity of Alakoko loko i'a as many aquatic species depend on brackish water conditions. Alakoko loko i'a will serve as a nursery for juvenile fish, increasing productivity and abundance of the fish population. This will impact the ecosystem of the Hulē'ia River, as well as Nāwiliwili Bay and nearshore environments. As a result, a loko i'a like Alakoko also can impact fisheries not just in estuaries, but also in marine environments including the pelagic zone and coral reefs.

Native fish species found in Alakoko include herbivores such as 'ama'ama (striped mullet), manini

(convict tang), and pualu (yellow-fin surgeonfish). Omnivorous fish include moi (Pacific threadfin) and āholehole (Hawaiian flagtail), and carnivorous species include kākū (barracuda) and pāpio (a juvenile in the trevally or jack family). The loko i'a ecosystem also includes phytoplankton and crabs ('alamahi, kūhonu, 'a'ama, mo'ala).



'Ama'ama (striped mullet). 1875 illustration by Frank Edward Clarke (public domain).

In addition to mangrove removal, restoration projects at Alakoko have also included the construction of a fish passage into the loko i'a, through funding from USFWS, and sediment removal from the pond itself (See Chapter 4). Future wetlands restoration as well as establishment of lo'i i'a kalo and lo'i kalo terraces and ki'o pua (a type of pond for raising juvenile fish [fry]) will continue to improve the habitat available for native fish and aquatic organisms at Alakoko.

The mangrove removal and the opening of the fish passage has already significantly changed the habitat in Alakoko loko i'a due to reduced shade, lower nutrient input, and higher water flow. Species (especially nonnative ones) that had thrived in the mangrove-influenced pond may have migrated upstream to areas where mangroves remain (Goeke and Carstenn, 2017).

## Aquatic Surveys

The State Department of Aquatic Resources surveyed fish population in Alakoko loko i'a quarterly between 2020 and 2021, and again in November 2024. They utilized fyke net sampling in the pond near the fish passage to assess species composition and species abundance. This research provides an understanding of the impact of mangrove removal on the aquatic environment, as well as the impact of creating a fish passage between the loko i'a and the river. It will help Mālama Hulē'ia to adaptively manage the aquatic habitat for fish species.

The surveys began prior to mangrove removal from the full circumference of the pond and before restoration of the fish passage. During that time, a large



Preparing the netting prior to fish surveying.

mud flat in the loko i'a blocked the mākāhā (saltwater inlet/outlet) at low tide.

The first surveys reflect species composition prior to the opening of the fish passage and before mangrove removal was completed. High numbers of invasive fish species including mosquitofish, tilapia, and glass shrimp were captured in those surveys. Invasive species remained dominant until the fish passage project was completed. High capture rates during these early surveys probably resulted from the mudflat restricting movement between the interior of the loko i'a and mākāhā.

Capture rates decreased once the fish passage was established as fish were no longer confined in a restricted area. The low catch rate continued into 2021, leading the DAR to pause sampling.

In November 2024, DAR resampled the loko i'a's fish population to assess changes following extensive mangrove removal. Although only a few individuals were captured, āholehole, a species of both cultural and commercial importance, was recorded for the first time.

In the future, Mālama Hulē'ia will conduct fish population surveys using low-impact quadrat methods. Biannual environmental DNA (eDNA) sampling will help assess biodiversity and detect hard-to-see changes in microbial and aquatic species.

## Water Quality and Quantity Monitoring

Mālama Hulē'ia is establishing a comprehensive water quality monitoring program to support the ongoing restoration of Alakoko loko i'a and to help assess pond health over time. Standardized monitoring will include regular measurements of key water quality parameters—such as temperature, turbidity, pH, salinity, dissolved oxygen, and flow—at established sites throughout the pond. While initial implementation is led by Mālama Hulē'ia staff and educator Alex Nelson, the program is designed to grow into a collaborative effort involving educators, students, and community volunteers, all trained in consistent data collection protocols. These efforts aim to build both ecological understanding and community stewardship of this vital cultural and natural resource.

## Predator Control Program

Predator control is an essential component of the Alakoko loko i'a restoration to ensure that the area provides safe habitat for endangered waterbirds and other native wildlife. Invasive predators of concern include feral pigs, cats, rodents, and barn owls.

Since 2019, predator control at Alakoko has been actively implemented through a reciprocal partnership with Hallux Ecosystem Restoration. In exchange for use of the property for training and capacity building, Hallux contributes in-kind services to support predator control. This effort includes the use of Goodnature traps, Tomahawk live traps, and electric fencing that excludes pigs from sensitive restoration zones while allowing waterbirds free movement throughout the habitat. This innovative approach has already yielded positive results for native species and sets the foundation for long-term adaptive management.

Looking ahead, Mālama Hulē'ia will continue refining its adaptive management plan in collaboration with Hallux and other invasive species management partners. Staff and volunteers will play an active role in implementing best practices, monitoring effectiveness, and responding to emerging threats. For example, in late 2024 the coconut rhinoceros beetle (CRB) was identified at Alakoko.

In response, Mālama Hulē'ia began working with the Kaua'i Invasive Species Council (KISC), along with additional partners, to develop and test appropriate control strategies, demonstrating the flexibility and responsiveness of the adaptive approach.

## Ungulate-Proof Fencing

Fencing will be a part of the restoration of the larger Alakoko system as an important part of the predator control efforts to protect and restore native plant areas as well as native wildlife species including endangered waterbirds. Feral animals also may have negative impacts on soil condition, water quality, and overall plant health.

The exclusions will use a combination of pig/ungulate-proof fencing, and electrical fencing with the goal of keeping pigs from destroying the newly planted sites. Alignment of potential fencing on Mālama Hulē'ia's Alakoko property is yet to be determined.

## Native Plant Restoration

In addition to removal of red mangrove other invasive plants, revegetation with native plants is a critical part of the restoration at Alakoko. Native land plants support both the aquatic ecosystem of the loko i'a and terrestrial ecosystems. Native plants provide food and habitat for native fish and birds, contribute to the nutrient cycles throughout the watershed, help prevent the spread of invasive plants, and provide raw materials for traditional practices. Mālama Hulē'ia utilizes a variety of native species to meet specific restoration objectives.

At Alakoko loko i'a, Mālama Hulē'ia is restoring wetlands and nahele (forests) with both native and culturally significant plants. Additionally, they will be establishing lo'i i'a kalo and lo'i kalo plots as well as kīhāpai (small garden), māla 'ai (cultivated food garden), and māla lā'au (medicine garden).



A pig captured on the Alakoko property during invasive predator control efforts.



Native plant material collected from a test plot for use for weaving.

## Ae'ae

Ae'ae is a hardy fast-growing water plant that is used to quickly provide ground cover around the loko i'a where the ground is usually saturated. It prevents erosion, suppresses the growth of invasive plants, and provide habitat and shelter for fry and other juvenile fish.

## Ahu'awa

Ahu'awa is a native wetland sedge that Mālama Hulē'ia plants to help provide diversity and habitat to the ecosystem. These plants have pale green leaves with sharp, finely serrated edges. Traditionally, the stems are pounded into fine strands which are used to strain 'awa (beverage made from the root of the kava plant) for drinking during ceremonies, or for making light cordage.

## Makaloa

A once widely grown and utilized wetland plant, Makaloa is being replanted around Alakoko loko i'a to increase diversity and habitat and to contribute to the revival of the traditional practice of weaving with dried makaloa strands. Makaloa mats are regarded as some of the finest mats found throughout the Pacific.



Volunteers in the Mālama Hulē'ia nursery.



Ae'ae (left), ahu'awa (center), and makaloa (right).

## Kuapā Restoration

To rebuild the Alakoko kuapā (wall), Mālama Hulē'ia is relying on the knowledge, skill, and mana'o (thought, belief) of native cultural practitioners. Cultural practitioners who work for Mālama Hulē'ia that excel in uhau humu pōhaku (traditional dry set masonry) and have hosted workshops to build local expertise and a cadre of uhau humu pōhaku practitioners who are dedicated to assisting Alakoko and other culturally important places across the islands. These practitioners are actively engaged in reconstructing the loko i'a using traditional cultural knowledge gleaned from stories and writings of kūpuna and evolving the practice with modern techniques that will ensure success.

The vision for Alakoko loko i'a is not just shaped by the staff, board, technical experts, Hawaiian practitioners of loko i'a and lo'i kalo, conservation professionals, scientists, and educators; it is also deeply rooted in the contributions of community volunteers, who are also essential to the kuapā restoration. Their dedication, alongside the expertise of partners, underscores the significance of collective action, especially when guided by the wisdom of Hawaiian culture. This spirit of collaboration is informed by diverse ways of learning, including the Hawaiian practices of mo'olelo (stories), place names, oli (chants), and 'ike kūpuna (ancestral knowledge), and helps guide the restoration with wisdom passed down through generations.

The restoration of Alakoko is also central to the healing of the trauma experienced by the land and people of Hawai'i. With a cooperative spirit, Mālama Hulē'ia is moving forward to bind the community back to the land and water. Healing land and water is very straightforward, but healing a people's trauma is much more complicated. Events such as the E Kū Ana Ka Paia held in October 2023, where nearly 2,000 community members gathered to help repair the kuapā of Alakoko, is an example of collective action that benefits both people and place. The day started with a pledge to focus on positivity. Kūpuna provided wisdom and patience. Youth provided eagerness, strength, and continued hope moving forward. Laulima (cooperation)



Native vegetation planted on the kuapā after mangrove removal.



Volunteers helping restore the Alakoko kuapā.

ensured that no pōhaku (stone) was too heavy to be put in place. Most of all, the unity that was achieved even for just a few hours gave everyone a stronger sense of hope and the feelings of success that occurs when people all work together for a greater good.

## References

Gee, H.K. 2007. Habitat characteristics of refuge wetlands and taro lo'i used by endangered waterbirds at Hanalei National Wildlife Refuge, Hawai'i. MS thesis. South Dakota State University. 154 p. Available at [https://downloads.regulations.gov/FWS-R1-ES-2020-0079-0010/attachment\\_38.pdf](https://downloads.regulations.gov/FWS-R1-ES-2020-0079-0010/attachment_38.pdf) (accessed 24 April 2025).

Goecke, S.D. and S.M. Carstenn. 2017. Fish communities and juvenile habitat associated with non-native *Rhizophora* mangle L. in Hawai'i. *Hydrobiologia* 803: 209–224. doi: [10.1007/s10750-017-3182-7](https://doi.org/10.1007/s10750-017-3182-7).

Harmon K.C., K.B. Winter, N. Kurashima, C.H. Fletcher, H.H. Kane, and M.R. Price. 2021. The role of Indigenous practices in expanding waterbird habitat in the face of rising seas. *Anthropocene* 34: 100293. doi: [10.1016/j.ancene.2021.100293](https://doi.org/10.1016/j.ancene.2021.100293).

Kurashima, Natalie, Lucas Fortini, and Tamara Ticktin. 2019. The potential of Indigenous agricultural food production under climate change in Hawai'i. *Nature Sustainability* 2.3: 191–199. doi: [10.1038/s41893-019-0226-1](https://doi.org/10.1038/s41893-019-0226-1).

Opie, Eryn N.P. 2022. Hawaiian waterbirds and indigenous wetland agroecosystems. MS thesis. University of Hawai'i at Manoa. Available at <https://scholarspace.manoa.hawaii.edu/items/6fbe2b12-73d2-4370-9267-05ec95d173ca> (accessed 04 June 2025).

# Appendix 5

## Alakoko Loko I'a Timeline & History

---

### Alakoko Loko I'a Timeline & History

| 1220–1420                            | 1420–1810                                          | 1810–1898                                                             | 1900–1969                                                      | 1970–1980                     | 1980–2025                                   |
|--------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|---------------------------------------------|
| Alakoko Construction & early history | Ahupua'a system; Western contact; Hawaiian Kingdom | Cattle ranching; rice & sugar production; annexation by United States | Peak of Sugar Plantation Era; red mangrove invasion; statehood | Hawaiian Cultural Renaissance | Loko i'a restoration begins; Mālama Hulē'ia |

## 1220–1420

According to radiocarbon dating, Alakoko was built approximately 600 to 800 years ago. Mo'olelo suggests a kuapā was constructed in a single night by Menehune for the royal children of Niumalu, 'Alekoko and Kalālālehua

### Early 1400s

Around 1405 Kukonā, the 7th ali'i (high chief or king) of Kaua'i, was born in Kōloa, Kaua'i. King Kalaunuiohua, the ambitious chief of Hawai'i who had already conquered three other islands, tried to seize Kaua'i. He was accompanied into battle by the combined armies and chiefs of Maui, Moloka'i and O'ahu. They landed ashore in Po'ipū. The war is known as Ke Kaua 'o Kawalewale, or 'the War of the Clearing.' The much smaller forces defending Kaua'i, led by Kukonā and his son Manokalanipō, soundly defeated the invaders after leading them inland and then surrounding them at the shore. Kukona captured all four chiefs of Hawai'i, O'ahu, Maui and Moloka'i. He had the opportunity to kill them all and assume leadership over the islands. However, he preferred peace and allowed them to return safely home with a promise that they never again make war on Kaua'i. The peace that lasted since that time was called Ka La'i Loa īā Kamaluohua, or 'The Long Peace of Kamaluohua.'

## 1420–1810

### Late 1400s

Kūkona's son, Manokalanipō, organizes the ahupua'a system on Kaua'i. The island was divided into districts (moku) and sub-districts (ahupua'a), each with their own land managers (ali'i) who answered to the ali'i 'aimoku (paramount king). This system led to long lasting peace and advances in economy, engineering, architecture and culture.

### Thriving Loko i'a

Niumalu and Ha'ikū are used extensively as a food production stronghold in the Puna district of Kaua'i.

It is estimated that a 38-acre loko i'a kuapā (walled fishpond) like Alakoko could provide 15,200–22,800 pounds of fish annually.

### January 20, 1778

James Cook first arrives at Waimea, Kaua'i.

## 1790s

Trade in 'iliahi (Hawaiian sandalwood) begins. During this era, Kamehameha I had a near monopoly on the market. However, after his death, his son Kamehameha II (Liholiho) was unable to stop other chiefs from negotiating their own trade deals with foreign sandalwood traders. By 1830, the Hawaiian forests were exhausted and trade in sandalwood had completely collapsed.

## 1795

Kamehameha I, chief of Hawai'i Island, establishes the Hawaiian Kingdom after conquering the islands of O'ahu, Maui, Moloka'i, and Lāna'i. Kaua'i and Ni'ihau remain independent.

## 1810–1898

### 1810

Cattle gifted to King Kaumuali'i by early settlers are allowed to roam wild in Wailua and Hulē'ia.

### 1810–1824

King Kaumuali'i peacefully cedes the islands of Kaua'i and Ni'ihau to Kamehameha I.

### March 30, 1820

Missionaries first arrive at Kawaihae, Hawai'i.

### 1848

At the Māhele (land division/privatization) of 1848, Alakoko and the surrounding land was given to Princess Victoria Kamāmalu, who transferred to her father, Kekūanā'o'a and later to Princess Ruth Ke'elikōlani.

### 1850

Large amounts of lo'i kalo in Ha'ikū are depredated by the wild herds belonging to the government. With increased regulation, cattle ranching continues to be used by community members.

### 1860

Lo'i kalo in Ha'ikū transitions into rice production to create food for plantation workers.

### 1880

Princess Ruth Ke'elikōlani sold the property containing Alakoko loko i'a to Paul Kanoa and for 106 years the land was owned by the Kanoa family and later the Kanoa Estate.

### January 17, 1893

Queen Lili'uokalani and the Hawaiian Kingdom are illegally overthrown on the island of O'ahu by Hawaiian subjects of American descent, American citizens, and foreign residents residing in Honolulu.

### July 4, 1898

Hawai'i is illegally annexed by the United States through a joint resolution of Congress.

## 1900–1969

Red mangrove was introduced to Hawai'i in 1902 by the American Sugar Company. It was brought first to Moloka'i to help with soil erosion. It has spread to almost all the island in Hawai'i. It is estimated that it first arrived in Kaua'i in the 1950s.

## 1930s

In the 1930s. Nāwiliwili Bay was filled in to build the harbor and breakwall. This caused significant changes to water circulation.

### August 21, 1959

Hawai'i becomes the 50th state of the United States.

Nearly half of Kaua'i streams have diversions, Hulē'ia Stream has four different diversions.

In 1990, an average of 10 million gallons per day (MGD) were diverted from Kū'ia stream, a tributary of Hulē'ia, to Waita Reservoir through the Kōloa Tunnel.

Nāwiliwili Stream rated as one of the most polluted since 1978. Contamination incidents including gas, chemicals spills, sewage spills, and urban runoff from Līhu'e.

Pū'ali Stream is located below a sewage treatment plant and a retired landfill. Water testing from the area indicated fertilizer contamination from the plantations.

## 1970–1980

### 1970s

This period in Hawaiian history saw a renewed interest in 'Ōlelo Hawai'i, hula, traditional craft, Hawaiian Studies, and cultural identity. This time is referred to as the Hawaiian Cultural Renaissance.

### 1971

A hula competition is first held at the Merrie Monarch Festival in Hilo, Hawai'i.

### 1974

Researchers for the National Park Service begin to identify fishpond remnants throughout Hawai'i ideal for historic preservation. Alakoko is identified in their initial report.

### 1976

The Hōkūle'a successfully navigates from Hawai'i to Tahiti using only traditional navigation techniques.

### 1978

The Hawai'i State Constitutional Convention is held, laying the groundwork for the return of federal land such as the island of Kaho'olawe and creating the Office of Hawaiian Affairs in an effort to right the wrongs done towards Native Hawaiians since the overthrow of the Kingdom of Hawai'i. The Hawaiian language becomes the official state language of Hawai'i for the first time since 1893.

# 1980–2025

## 1986

The Kanoa Estate sold the Alakoko property to the Okada Trucking Company.

## 1987

The Hawai'i State Department of Education begins managing the Hawaiian Language Immersion Program (HLIP) in its public school system.

## 1989

Hui o Kuapā is established on Moloka'i to restore traditional fishponds.

## November 23, 1993

The United States Congress adopts the Apology Resolution and "acknowledges that the overthrow of the Kingdom of Hawaii occurred with the active participation of agents and citizens of the United States and further acknowledges that the Native Hawaiian people never directly relinquished to the United States their claims to their inherent sovereignty as a people over their national lands..."

## 1996

Nā Kālai Wa'a o Kaua'i (NKWoK), or The Canoe Builders of Kaua'i, is founded.

## 2001

Paepae o He'eia, a private non-profit organization dedicated to caring for He'eia Fishpond, is established.

## 2004

Hui Mālama Loko i'a begins growing a network of fishpond practitioners and organizations from across ka pae'āina o Hawai'i.

## 2013–2014

Canoe paddlers with Kaiola Canoe Club began to notice changes along the river.

## 2015

Mālama Hulē'ia nonprofit corporation is formed.

## 2015–2017

Mālama Hulē'ia completed mangrove removal and wetland restoration pilot project at Pu'ali, on County of Kaua'i land.

## 2017

Mālama Hulē'ia began restoration efforts at Alakoko loko i'a. Between 2018 and 2021, Mālama Hulē'ia removed 26 acres of invasive red mangrove that surround the pond.

## 2021

Mālama Hulē'ia purchased the property containing Alakoko loko i'a, with support from the Trust for Public Lands.

## 2022–2025

Mālama Hulē'ia continues restoration efforts at Alakoko loko i'a and initiates conceptual master planning.

# Appendix 6

## At Loko Alakoko, What's Under the Wall?

---

---

By Jan TenBruggencate



The Alakoko fishpond wall has been described in detail many times over the years, often by people who apparently never actually inspected the wall itself.

It is a unique structure among Hawaiian fishponds, an inland pond wall structure that—for much of its length—combines an earthen berm with basalt boulders armoring on its outer river-side face, but not on the inner pond-side face. Kaua'i archaeologist William "Pila" Kikuchi in 1973 said it was the first brackish-water fishpond built in the Hawaiian Islands. He said it was alternately called Alakoko, Alekoko and Pēpēawa. It is the largest fishpond on the island of Kaua'i, according to a 2012 report prepared by Angela I. Fa'anunu, Margaret Magat, and Hallett H. Hammatt, of Cultural Surveys Hawaii.

In its combined mud and rock construction it is different from most known Hawaiian coastal pond walls. Those tend to be entirely made of large basalt boulders, or more commonly, basalt on both inner and outer walls, with an interior of porous 'ili'ili, or small stones and pieces of coral. Figure A6-1 is from Kikuchi, 1973, is a cross-section view of a standard wall construction often used on the other islands, this one the Ali'i Fishpond on Moloka'i.

But the Alakoko wall uses a technique related to one that is common on Kaua'i, where many Hawaiian old wall structures, whether for religious structures like heiau or for border walls, are constructed of earthen berms faced on the sides and top with basalt boulders. Some say that's because there are fewer rocks and more soil on Kaua'i, which is geologically much older than the other islands.

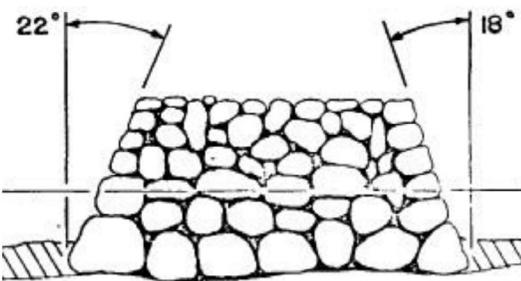



Figure A6-1

The east-west-running Alakoko pond wall disappears into the swamps and hillside at the west and touches the surrounding ponds and lowlands to the east.

Archaeologist Francis K.W. Ching in his 1973 "The Archaeology of Puna, Kaua'i," reports that the entire wall is underlain or bordered by an older basalt wall on the river floor, which is between 13 and 20 feet wide. Here is his rendering of his assumed cross-section (Figure A6-2).

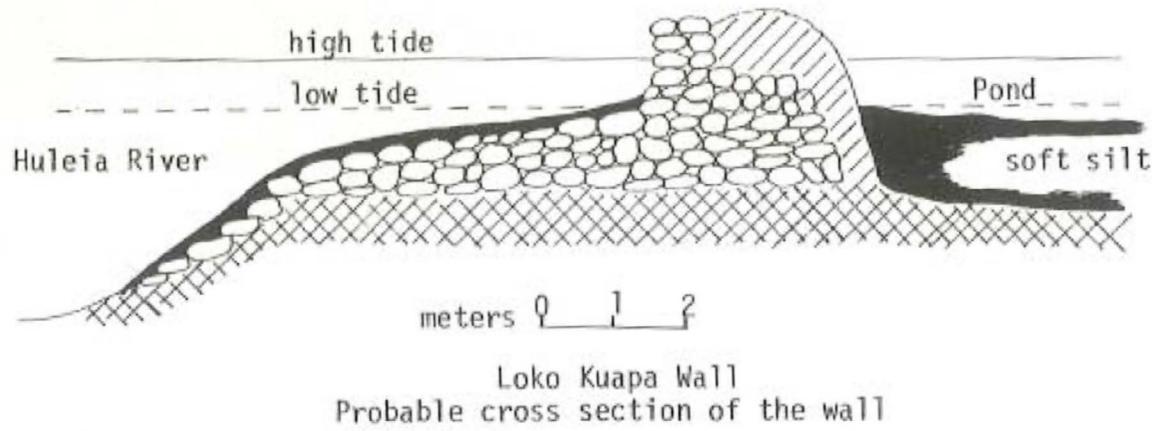



Figure A6-2

But it is not clear how Ching came to that assumed shape. He also envisions a wall that is earthen top to bottom, with a vertical rock wall on its river-facing side. Here are two of his views of that theoretical configuration (Figure A6-1):

What is clear from the surface is that the design in cross section changes, depending on where you are along the length of the wall. In the middle section, it has an earthen berm that is faced on the river side by a stone wall that is generally two boulders thick. But approaching the upstream or western end, the rock portion is only one rock thick. Ching measures the rock-faced portion at 1,764 feet in length. At the extreme western end, there appears to be no rock face; just a 435-foot earthen berm. That is also the case at the extreme eastern end, whose length depends on where you conclude the end is.




Figure A6-3

How long is the wall? Ching places the total wall length, confusingly at both 600 meters and 2,700 feet. Since 600 meters is no more than 1900 feet, that must be a typographical error. Fa'aunu, Magat and Hammatt put the wall at 825 meters, or about 2,560 feet. Mike Carson, in his 2005 paper, 'Aleko Fishpond, places the wall at 850 meters, or about 2,635. Bennett in 1931's "Archaeology of Kauai," says "over 900 yards." One common number used by others is 900 yards, which is the same as Ching's 2,700 feet. But when a team from Mālama Hulē'ia informally measured, starting where the western wall disappears into swamp and running to its eastern terminus, they came up with less than 2,000 feet.

This is not to suggest all these professionals didn't measure, but that it is difficult to decide where to measure. It is a challenge to designate the endpoints. In 2021, the western end of the wall seems to disappear into a swamp, while the eastern end connects to the walls of smaller ponds. Where does the Alakoko wall end and the next feature begin? That decision is up to the person doing the measuring.

Some tellers of tales have suggested that the Alakoko wall is made of cut stones, like those used in the prehistoric Kikiaola aqueduct at Waimea, Kaua'i. Alakoko and Kikiaola have long been connected in legend, and Kikuchi suggests they were built in the same time period by some of the same masons. The cut-stone Alakoko theory seems to come from people who have never looked at the wall, since there is no evidence of that.

Other writers have argued that the Alakoko wall is entirely made of basalt rocks, like many other fishponds, without an earthen core.

When Mālama Hulē'ia began the arduous work of removing the invasive, destructive mangrove overgrowth, whose roots were tearing apart the wall, certain small truths became evident. And as we suggested above, neither the cut-stone theory nor the all-rock theory holds water.

At no point is the wall entirely made of rock if viewed in cross-section. In fact, much of the wall is indeed earthen berm with no evidence of rock. Certainly the ends are entirely made of piled mud and sand. In the central portion, for some of its distance, the mud/sand berm is faced with lava rocks. Thus far in Mālama Hulē'ia's work, none of those basalt rocks have shown evidence of shaping like the Kikiaola wall stones. All the rocks appear to be rough basalt stones, of a size appropriate for a human to carry.

Why is this particular fishpond wall so different from others?

Most Hawaiian pond walls were built on shallow reef flats, where builders could walk in knee or waist-deep seawater to set their stones. But parts of the Hulē'ia River nearby are 8-10 feet deep, although we don't know how deep the river was in about 1400, when it was built. Almost certainly,

builders would have had to work underwater. Were they lowering the first ranks of stones from canoes? Or perhaps were Hawaiian stonemasons walking on the river bottom, carrying basalt burdens as they held their breath? And after the fact, was this work of construction so heroic that storytellers invented the tale about magical Menehune doing the construction instead of their own inventive but human ancestors?

One thing that is clear in the appearance of the wall is that it has been touched by many hands, by people with different theories about construction, and with access to different materials. It is a living wall that has changed over time.

That bears out the known history, both from early Hawaiian legends and from the period after Western contact. Many of the early legends suggest that Hawaiians of the area started the wall, but were unable to finish. The legends say skilled craftsmen—some say they were Menehune spirit people from the forest—were called in to finish it. They would have had different construction methods. Also, during the 1800s and 1900s the pond wall was reconstructed at least twice, about 1900 and again after the 1946 tsunami. There would also have been repairs after other storms and wave events.

An 1890 photo attributed to Theodore P. Severin shows the wall in disrepair with its eastern end broken open (Figure A6-4).

A photo dated at 1900 shows the breach repaired (Figure A6-5). The provenance of this photo is not known.

By 1912, the photo shows that significant additional work had been done, adding new ponds at the eastern end of the wall (Figure A6-6). This photo by Ray Jerome Baker is courtesy of Bishop Museum.

So at a minimum, there are historical suggestions it was started by commoners of the region, completed by skilled masons, and rebuilt over the years by workers under early chiefs. Then in the more recent period, by Chinese farmer merchants who managed the pond from the late 1800s into the 1900s and by western operators in the 1940s. Each of them would have approached the pond challenge differently, and some, notably in the 1900 period, added features like two eastern ponds that may have been used as nurseries, harvest holding ponds, or for other aquaculture related purposes.

Ching suggests that the pond may have started its life as a fishtrap or pā, with a low wall whose top was between the low and high tides. That way fish would have traveled over the wall at high water, and would have been trapped inside at low water for easier catching. The subsequent traditional pond wall may have been built atop the pā wall, Ching says. But he also says it may simply have always been a regular enclosed pond, a loko kuapā.

The traditional Hawaiian mākahā, or control gates, which would have been built of basalt stones and wooden lattices, are gone. They have been replaced by more modern concrete structures. Mālama Hulē'ia is aware of three mākahā. One is midway down the length of the wall. One in the surviving north-south wall at the eastern end of the pond (visible on the lower horizontal wall in the photo above.) And the foundations of a third have been located, buried in sediment west of the previous mākahā and visible in the photo above midway on the upper horizontal wall. The construction of

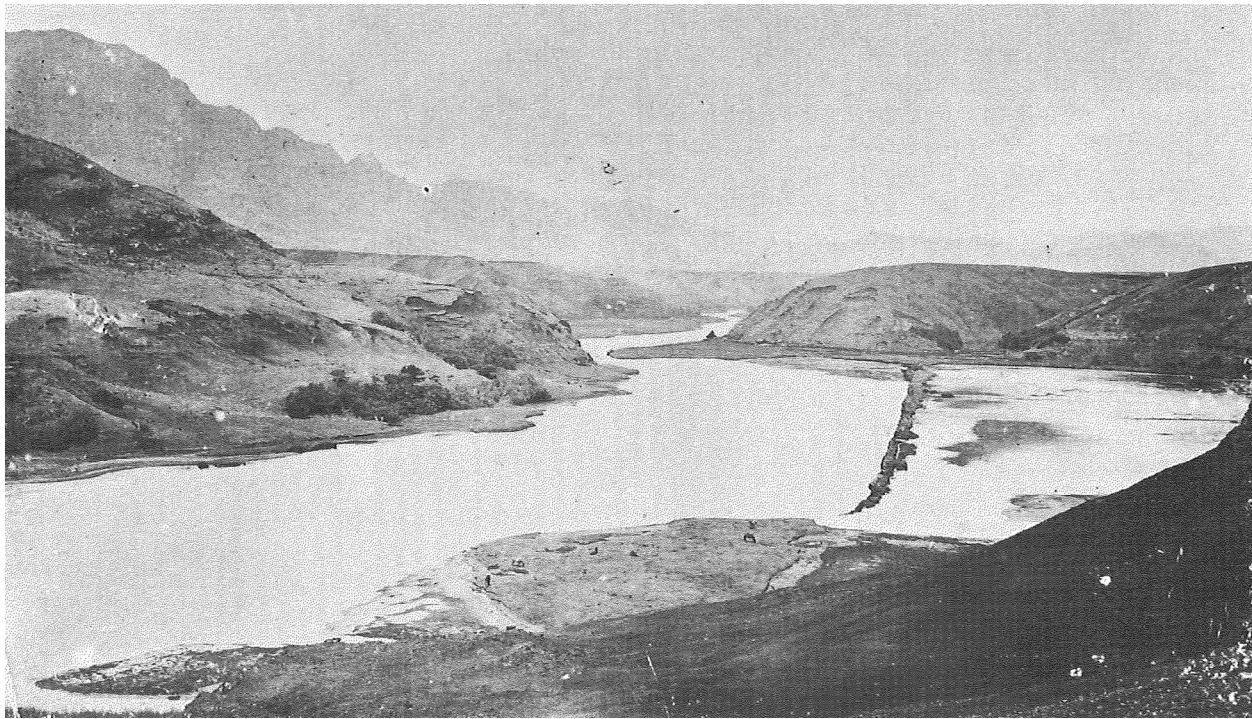



Figure A6-4



Figure A6-5

the different mākāhā is different, so they may not all have been built at the same time by the same people. Mālama Hulē'ia has not yet established dates of construction.

There are reports that sheets of roofing iron were inserted into the mud along the interior side of the wall, and still visible in the 1970s.



Figure A6-6

Bags of concrete were used to make repairs after the 1946 tsunami. Some of those bags are still visible on the top of the wall today, in the area near the main pond wall mākāhā.

Archaeologists have done isolated test pits and have probed through the water and mud to try to find answers about the wall's actual features, but their results were necessarily limited. Beneath the surface, lie mysteries yet to be revealed.

## Sources

Bennett, W. C. 1931. Archaeology of Kauai. Bernice Pauahi Bishop Museum Bulletin 80. Bishop Museum Press, Honolulu.

Carson, Mike. 2005. 'Alekoko Fishpond. Society for Hawaiian Archaeology Special Publication 2:66–71.

Ching, Francis K.W., P.B. Griffin, W.K. Kikuchi, W.A. Albrecht, J.C. Belshé, and C. Stauder. 1973. The archaeology of Puna, Kaua'i. Archaeological Research Center Hawaii, Lawai.

Fa'aunu, Angela I., Margaret Magat, and Hallett H. Hammatt. 2012. Cultural Impact Assessment for the Kaua'i Community College Redesignation to Urban District Project, Nāwiliwili, Niumalu, and Ha'ikū Ahupua'a, Līhu'e District, Kaua'i Island. Cultural Surveys Hawai'i/Wilson Okamoto Corporation, Kailua.

Kikuchi, William. 1976. Prehistoric Hawaiian Fishponds, Science 193(4250): 295–299.

McMahon, Nancy. 2013. Cultural Impact Assessment for Rice Camp Affordable Senior Housing Project Kalapakī Ahupua'a Līhu'e District (Puna Moku), Island of Kaua'i. McMahon Consulting/Environet, Lihue.

This appendix was originally published on the Mālama Hulē'ia website. Available at <https://malamahuleia.org/at-loko-alakoko-whats-under-the-wall-2/> (accessed 31 July 2025).

